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SECTION 1.0

Introduction and Study Overview




1.0 Introduction and Study Overview

As its name suggests, the Maximum Entropy/Optimal Projection (MEOP) theory of control
design for large space systems represents the synthesis of two distinct and novel ideas: (1) min-
imum information stochastic modeling of parameter uncertainties (to characterize the inevitable
tradeoff between robustness and performance) and (2) optimal reduced-order compensator design
for a given high-order plant (to optimally quantify the tradeoff between controller complexity and
performance). A previous AFOSR-funded study (contract no. F49620-84-C-0015) consolidated
MEQP theory developments and successfully demonstrated the theory on a variety of flexible space

structure models.

It is now possible to extend the basic MEOP theory and design capability to handle an even
larger class of structural concepts. In particular, the sheer size, or dimensionality, of proposed
flight structures (such as Space Station) necessitates what may be called decentralized analysis
and design. In brief, this terminology refers to procedures which treat portions of the system
individually and then combine the results. Often the need for such analysis arises from such basic
constraints as computer capacity, i.e., the model may simply be too large to be manipulated by the

computer at one time.

Our thinking concerning decentralized analysis and design is closely related to the current lit-
erature on large scale systems. Our goal is thus to go beyond previous work by using the MEOP
theory to quantify uncertain interactions among subsystems, thus providing an informational sys-
tem partitioning. A major goal in this regard is to utilize our theory to extend the applicability of

the concept of connective stability to complex, multibody spacecraft.

In practice, a direct consequence of the physical size and physical complexity of proposed
spacecraft imposes severe constraints on the communication links between sensors, processors and
actuators. Relevant issues include cabling mass and RF shielding problems along with reliabil-
ity concerns. This leads to consideration of multiple sensor/processor/actuator subcontrollers or
substations on the spacecraft without real-time intercommunication. Although the processors do
not directly exchange data, preflight design of their software must, of course, account for complex

operational interactions among subcontrollers via the structural response.

The design of such a decentralized architecture or smplementation is clearly a nontrivial task

and can be thought of as involving two interrelated steps:
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1. Determination of the control-system architecture including the number of substations and

the assignments of sensors and actuators to particular substations; and

2. For a given architecture, design of the processor software for each subcontroller.

The aims of the present study are to extend MEOP to address both of the above items. Indeed,
because maximum entropy modeling quantifies uncertainty (i.e., lack of knowledge) it is possible
to directly include informational aspects in the system model. One goal is to quantify the degree
of suboptimality resulting from interaction uncertainties and alternative controller architectures.
Once a particular architecture is selected, the design of each subcontroller often requires iterative
solution of high-dimensional design synthesis equations. A second major goal is thus to evolve

efficient approaches to the solution of the MEOP design equations for optimal, decentralized control.
1.1 Objectives

The specific tasks required to accomplish the goals of this project are discussed in detail within

the original technical proposal and are sumrmarized as follows:
Task 1:

Undertake rigorous extensions of the MEOP design equations to the case of distributed (decentral-

ized) controller architecture in a variety of settings. These developments include:
1.1 Extension of the continuous-time MEOP equations to the decentralized case.

1.2 Derivation of the MEOP design equations for decentralized discrete-time control of discrete-

time systems.
1.3 Extension of the MEOP design equations to a hierarchical controller architecture.

Task 2:

Develop methods for determining performance degradation due to uncertainty so as to evaluate
the performance of different decentralized architectures with controllers obtained via the design

equations derived in Task 1. In particular:

2.1 Derive methods for bounding the degree of suboptimality resulting from decentralized

design and decentralized implementation. . .#

2.2 Evolve effective methods for deriving uncertainty bounds which imply connective stability

1-2
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for the overall system.

Task 3:

Verify the analysis carried out in Task 2 and develop solution techniques for the decentralized form

of the MEOP design equations. The following sequence of developments was carried out:

3.1 Develop more efficient techniques for solving the MEOP centralized control design equa-
tions. In particular, apply topological degree theory to elucidate the solution set and es-
tablish the globally optimal solution. Then develop homotopy methods for highly efficient

numerical solution of the centralized design equations.

3.2 Exploit the developments of 3.1 to analyze the existence, uniqueness, and global optimality
of solutions to the decentralized MEOP design equations derived in Task 1. Utilize the
homotopy algorithms derived in 3.1 to establish a convergent solution procedure for the

decentralized design equations.
Task 4:

Apply the various decentralized extensions of MEOP to realistic design problems. For each of the

selected design examples the following subtasks encompass the desired goals:

4.1 Generate detailed state-space model, define uncertainties, define sensor/actuator number,
type and placement, and assign disturbance spectrum. Use system model to perform cen-

tralized control-tradeoff studies Snuch designs may utilize decentralized design techniques.

4.2 Using the centralized tradeoff studies as baseline, determine decentralized /hierarchical im-
plementation architectures based upon uncertainty patterns, physical constraints and pro-
cessing requirements. For each design assess the degree of suboptimality resulting from the

loss of centralization.
1.2 Owutline of Program Accomplishments

In this section, we briefly summarize the results obtained under the tasks listed above. Further

details are given in Sections 2.0 through 5.0 and the Appendices.

Since developments under Task 2 are not only of fundamental significance to MEOP design
but also represent the discovery of entirely new design analysis tools, these accomplishments are

discussed first in this report.
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The essential problem to be addressed in subtasks 2.1 and 2.2 is the determination of non-

conservative bounds on system performance degradation due to uncertainties and/or subsystem
interactions. Note that once performance degradation (e.g., line-of-sight error, surface shape er-
rors) is characterized, so is robust stability. Thus both 2.2 and 2.3 are handled by developing a
suitable performance robustness analysis. This has been accomplished by the development of a
new robustness analysis tool, namely, Majorant Robustness Analysis (MRA). Based upon the work -—
of Ostrowski and Dahlquist on matrix majorants, MRA determines bounds on the degradation of
system performance due to unstructured or parametrically structured uncertainties and bounded
subsystem dynamics. Since the basic development is carried out in a general operator setting,
MRA can be applied within both frequency-domain/input-output and time-domain/state-space
descriptions. In the frequency domain/input-output setting MRA generalizes previous robustness
results (e.g., singular-value analysis), while in the state-space setting it is fully compatibie with
MEOP design synthesis. MRA thus provides a design analysis tool which nicely complements our
design synthesis theory. Moreover, MRA reveals a direct link between the MEOP stochastic mod-
eling and design formulation and a deterministic bound for robust performance, thereby immensely
strengthening the foundations of the Maximum Entropy modeling approach. Section 2.0 outlines
the theory of MRA and illustrates its application to statistical response, frequency domain analysis,

and, finally, time-domain analysis of system transient response.

With the development of MRA as a rigoreus design analysis tool, one is in position to formulate
the problem of robust decentralized control as a well-posed optimization problem. The robust
optimization problem reduces to the optimization of controller gains for fixed-structure controllers
under a Maximum Entropy stochastic system model (or, equivalently, under a MRA model). The
application of optimization theory to the theoretical solution of these fixed-structure optimization
problems (i.e., the derivation of optimality conditions) is the essence of Task 1 and has been fully
carried out. More details on the resulting MECP design synthesis equations for decentralized and

hierarchical controllers is given in Section 3.0.

The MEOP design equations derived under Task 1 show that the optimality conditions for -
robust decentralized /hierarchical controllers can be decomposed into a sequence of design equations
involving four nonlinear matrix equations for each control substation or coordinator. Each set
of four equations has the same fundamental structure as the four MEOP design equations for
centralized control design. This surprising decomposition of the structure of the decentralized

hierarchical MEOP equations immediately suggests an iterative solution procedure which reduces
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the overall problem to the sequential solution of standard MEOP design equations pertaining to

each subcontroller and /or coordinator.

The above observations have greatly simplified the development of efficient solution algorithms
under Task 3. Since, however, each subcontroller problem may be of high dimension and the
nurnber of subsystems may often be considerable, it was recognized that an order of magnitude
improvement was needed for the efficiency of the MEOP solution algorithm. Thus, we proceeded in
two stages: Develop greatly improved solution techniques for the MEOP centralized control design
(Task 3.1), then exploit the results for solving the decentralized /hierarchical design equations {Task
3.2).

Under Task 3.1, S. Richter has developed and successfully tested a homotopic continuation algo-
rithm for solving the basic MEOP design equations. In place of solving four (n x n) (n = dimension
of the plant) nonlinear matrix equations as in previously developed algorithms, Richter’s method
reduces the problem to solving four n. X n (n, = dimension of compensator) linear equations for a
modest number of continuations steps. The algorithm converges to machine accuracy, and for n,
small actually entails less computation than is required for the standard Riccati solutions involved
in the full-order compensator. Moreover, using the continuation approach together with topologi-
cal degree theory, Richter has succeeded in resolving many heretofore intractable issues connected
with multiplicity of solutions and convergence to the global minimum. These results essentially
complete the theoretical foundation of the optimal projection theory of fixed-order dynamic com-
pensator design. It should also be noted that in a broader context, these results illustrate a new
general approach to nonconvex optimization problems. Further details on the iterative approach

to decentralized design and on Richter’s algorithm are given in Section 4.0.

Finally, both dynamic modeling and determination of baseline centralized control designs have

been completed for a variety of realistic example problems thus completing Task 4. These are

discussed in numerous publications and are highlighted in the body of this report.
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Performance Degradation
Due to Uncertainties and Subsystem Interactions
Via Majorant Analysis
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2.0 Performance Degradation Due to Uncertainties and Subsystem Interactions
Via Majorant Analysis

The problem addressed here is the determination of bounds on the degradation of system per-
formance due to uncertainties and/or unforeseen and imperfectly modeled subsystem interactions.
Such bounding techniques represent a fundamental systems analysis tool that is indispensable for

further elucidation of decentralized controller architectures and robust design.

Extensive work has been carried out in the area of frequency-domain analysisof robust stability
giving rise to the H-infinity theory of robustness characterization and robust design [2.1-2.5].
However, although the H-infinity world-view is a beautiful and compelling theory within its proper
province, its fundamental assumptions render it inapplicable to structural vibration control which
involves parametric and often nondestabilizing open-loop uncertainties. A principal difficulty is the
conservatism of H-infinity robustness characterizations. A stability robustness analysis technique
is called conservative if the predicted set of nondestabilizing perturbations is a proper subset of the
actual set of nondestabilizing perturbations. Note that conservatism jointly depends upon both

the definition of admissible perturbation classes and the robustness analysis technique.

The well-known conservatism of H-infinity theory does not arise because it operates in the
frequency domain, per se, or because the infinity norm is employed, but rather because of the
crudeness of H-infinity bounds. What is the fundamental source of this crudeness? Possibly this
arises because the fundamental intent of H-infinity development was the eztension of classical

control design concepts to the multivariable case per se rather than specifically for the problem at

hand.

For example, in keeping with classical ideas, there has been widespread insistence upon couching
all questions of performance and uncertainty in terms of simplistic (albeit traditional) unity gain
feedback diagrams. Thus, singular value developments have lumped uncertainty in a single block
thereby obscuring the often complex structure of modeling error. Moreover, this feedback paradigm

is maintained even for structured uncertainty approaches [2.6].

To achieve a less confining point of view, the first step is to represent uncertain systems by

means of a large-scale system input-output formulation as depicted in Figure 2.0-1.

Referring to Figure 2.0-1, the overall system is represented by interconnected subsystems un-

dergoing interactions. The subsystems, characterized by the operators G (k = 1,...,r), represent




B ¥y Hy ¥, (i=l...r) -

(I + GR)y = Yo

a

Yo = GV

G = block-ciag {Gk}; Gy known
k=l...r

0 His Hyq ...W e M, some compact, .
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H31 H32 0 of f~-diagonal block structure
¢ .
— \ g J —— =~y 4
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interactions or uncertainty about H
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Problem: Bound output y or deviation from nominal, Y-Yqr

for all H e ¥

Figure 2.0-1. Large-Scale Input-Output Formulation
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the known dynamics of the system while the subsystem interactions, given by the operators Hy;,
correspond to uncertainties. Note that the partitioned off-block-diagonal operator H is stipulated
to belong to some compact arcwise connected set ¥. The set ¥ specifies both the character and

extent of dynamical uncertainties.

The motivation for the above input-output formulation within the context of large-scale systems
is obvious. But in addition, thanks to the Dynamic Inclusion Principle and related ideas elaborated
by Siljak and his co-workers [2.7,2.8] the representation of Figure 2.0-1 is also suitable for parametric

perturbations in monolithic systems, i.e., systems without explicit interconnections.

The problem now addressed is how to bound the degradation of the system output vector y or
the prediction y — yo in the presence of the uncertainties. To give this problem mathematical form,
we must use the block-matrix results of Ostrowski {2.9] and define the dlock-L, norm matriz of a
partitioned operator M and the block-norm matrix of a partitioned matrix M as in the top half of
Figure 2.0-2. With these definitions, the principal problem is to bound the block-norm vector of
the system output y over all variations of the uncertain perturbations, i.e., lyle as H varies over
the whole set ¥. Bounding off-nominal prediction errors is handled similarly and so will not be

given separate treatment here.

Referring again to Figure 2.0-2, it is evident that a suitable bound for |y|r takes the form of a
nonnegative matriz (i.e., a matrix whose elements are nonnegative) £ multiplied by the block-norm
vector of the nominal output. Note that the double inequality sign relating two matrices indicates
element-by-element inequality. The “gain matrix” £ is just a nonnegative bound on the worst-case
value of the block-L, norm matrix of the output gain operator L. Note that, in essence, £ maps the
nominal output into the actual output as corrupted by uncertain interactions. In the following, we
focus on bounding the gain operator. Note (from the bottom of Figure 2.0-2) that this formulation
gives rise to a clear definition of conservatism. Note also that the existence of a finite bound £(¥)
implies input-output stability (see [2.10]). Thus robust stability and performance degradation can

be handled by one and the same theoretical apparatus.

Now, the above articulation of uncertainties into numerous interactions permits more finely
articulated methods of computing bounds beyond singular value analysis, namely, methods associ-
ated with the majorant analysis of Dahlquist [2.11]. Following Dahlquist, we define the majorant
and minorant matrices of a partitioned matrix or operator as in the top portion of Figure 2.0-3.

The inequalities shown in the center of the figure follow directly from the definitions and indicate
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(A.l.. Ostrowski, J. Fath., Anel. Appl., Vol. 2, pp. 161-209, 1961.)
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Figure 2.0-3. Matrix Majorants and Minorants

2-5




that the majorant and minorant are matrix generalizations of the maximum and minimum singular
values, respectively. Moreover, these inequalities can be very efficiently used to bound the block-L,
norm matrix of the output gain operator. In fact, what we seek is merely some majorant of the

gain operator.

Figure 2.0-4 shows a simple example of how the inequalities of Figure 2.0-3 can be used to

derive such a majorant for the gain operator, starting from the defining relation
(I+GH). =1
for £ given in Figure 2.0-2. The result obtained in Figure 2.0-4, namely:
|Llp << £

(I-GH)L =1,

is, in fact, the crudest possible majorant bound and is equivalent to the small gain theorem for
L, input-output stability of a large scale-system (2.10]. When there is only one system block, this

further reduces the singular-value bound as a particular special case.

But the uncertain subsystem interaction format (introduced in Figure 2.0-1) in conjunction
with majorant analysis gives an almost unlimited potential for formulating sharper bounds. Using
a process of operator iteration, one can obtain the results displayed in the top half of Figure 2.0-
5. Here we have a hierarchy of output bounds, where each successive member of the hierarchy
requires more and more information but is less and less conservative (with respect to the set ¥).
For the results shown in Figure 2.0-5, the sequence of bounds approaches the least upper bound
under a norm-bounded uncertainty set, i.e., for this set ¥ the hierarchy is nonconservative in the
limit! Note also that, because we work in an operator setting, distinctions between the time and
frequency domains are blurred. It is parochial to assert that only frequency-domain or time-domain
methods must be used. What’s needed is easy and fluent translation between the frequency and
time domains as provided here. Furthermore, the computational advantage of this kind of hierarchy
is that each bound requires only the inversion of an M-matrix. This is quite straightforward and
nicely tractable, even for many subsystems, since it involves computing a monotonically increasing
sequence where each iteration involves an addition and a multiplication of low-order matrices.
Figure 2.0-6 summarizes the relevant facts on the solution of majorant equations. One has only

to contrast the simplicity of these results with the difficulties of the u-function computation [2.12)
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nth (m =0, 1,...) member: ¢
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All majorant bounas invclve equations of the form:

(I_-B)L = C
C, E € Rix‘

* L e Rixr exists iff (I-B) is a nonsingular M-matrix

* L e Rixr exists iff the sequence:

Lo =0

(I-{E})Ln+1 = <B>Ln + C

({B} & diagonal part of B
<> & B - {B})

converges. I1f so, L = lim L
n-e

* I, € RiX: exists iff the sequence:

1

<B>, §

0
K> 0: Al =A2 ;i S .4 = Sy (I+A
> 0: Ay = Ax 7 Ska1 T Sk Itk4y

converges. If so:

1

L = lim sk(x-{s})' c

Kk~ o0

(nth iterate = 2" sinple iterations)

Figure 2.0-6. Solution of M-Matrix Equations
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to appreciate the . ower of the “uncertain subsystem” representation of Figure 2.0-1 and its allied

bounding technique, majorant analysis.

The above discussion has set forth the general development of majorant robustness analysis
within an operator setting which employs L, norms to describe the “size” of subsystem outputs.
For systems with stochastic inputs and time independent parameter uncertainties, the main lines of
development are analogous. However, in this case one needs to work with the Lyapunov equation
for the steady-state second-moment matrix of response and then derive majorant bounds for the
block-norm matrix of the second moment. The general setup for undertaking majorant analysis for
the parametrically uncertain stochastic systems is shown in Figure 2.0-7. Here, the block-diagonal
matrix A represents the known subsystem or nominal system dynamics while the off-block-diagonal
matrix G represents uncertain subsystem interactions or parametric uncertainties. Generally, G is
stipulated to be some element of a compact, arcwise connected set § which describes the geometry
and severity of uncertainties. The simplest prescription, for example, is that G contains all off-
diagonal block matrices such that the norm of each off-diagonal block is bounded by a stipulated

number.

Note that the disturbance intensity matrix V' and the second-moment matrix Q are partitioned
conformably with A and G. We bound performance degradation due to uncertain interactions G
ranging over the admissible set § by bounding the block-norm matrix of Q. To do this, however,
requires additional algebraic tools, such as the Kronecker algebra which centers on the VEC oper-
ator, Kronecker product, and Kronecker sum. These operations, which are defined by the relations
shown in Figure 2.0-8, are critical to the development. The reader is encouraged to consult the
review paper by Brewer [2.13] for a thorough discussion of the Kronecker algebra. Because of the
algebraic complexity of deriving majorants for the second-moment matrix, the Kronecker algebra

is far more than a mere notational convenience.

For our development, the standard Kronecker algebra is a completely adequate tool only when
each subsystem (with dynamics A, k = 1,...,r) is one-dimensional. However, we are concerned
with systems composed of many high-dimensional subsystems. To handle the algebraic work,
one needs a generalization of the Kronecker algebra, namely, the block-Kronecker algebra. The
underlying operations of the VECb operator are the block Kronecker product and sum which are
displayed in Figure 2.0-9. Note that while the VEC operator stacks the columns of a mstrix into a
vector, the VECD operator stacks the VEC’s of the columns of subblocks in a partitioned matrix.
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Figure 2.0-7. Subsystem Interaction Model
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Definitions

(J. V. Brewer, IEEE Trans, Circ. Sys., Vol. CAS-25, pp. 772-781, 1978.)

(%, A, I € RPXD

VEC operator, vec(M):

vec (M)

Kronecker Product, @

A ® B # a;,B a;,B ... a;B
alzB 322B cee a2nB
anIB anZB coe annB J

Kronecker Sum, @

A ®B & o ® I +I, @ B

Figure 2.0-8. Kronecker Matrix Algebra
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1. Block vec operator, vec

[ | 1

If M=

vecb K £

2. Elock Kronecker Product

Ay ®

‘ - a
B A®B=A?1®
A;_l@
where:

LT

3. Block Kronecker Sum, @

Definitione ~

b(h).

bllz * 00

, then:
Moy
vec Mll
vec.MZI
vec Ml’l
VeC:Elz
vec Mtzl
r @
B Ay ® B ... A,
B a,, ® B ... Ay
B A, ® g ... A,
A, N ® Aig +e0 M ®
Ay M ® Ryy oo H ®
A, M ® Ry ceo M ®

A ®B 2 A @® I + 1 @ B

4. {-1, <-> and vecba:

{M} & bl-diag M, 1, <> & N - (M)

vecbd I &

vec Mll
vec Mzz

vec f';rr

Figure 2.0-9. Block-Kronecker Algebra
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If the subblocks of the partitioned matrix M are all one-dimensional, the block-Kronecker algebra
definitions given in Figure 2.0-9 revert to those given in Figure 2.0-8. Moreover, the block-Kronecker
algebra is endowed with the same battery of identities as in the standard Kronecker algebra. These
identities, shown in Figure 2.0-10, are invaluable in effecting the required algebraic manipulations

to obtain the results discussed below.

In particular, using the block-Kronecker algebra, one can first reduce the second-moment Lya-
punov equation into a rather compact equation determining the diagonal subblocks (the individual
subsystem second-moment matrices) alone. This equation is the second from the top in Figure
2.0-11. With this as the starting point, one then applies majorant analysis to obtain a hierarchy of
majorant hounds as shown in the bottom half of Figure 2.0-11. As in the L, bound analysis, each

successive member of the hierarchy offers less and less conservative bounds.

Note that having obtained the expressions shown in Figure 2.0-11, we do not calculate the
block-Kronecker sums and products explicitly. Rather, in each case, we reverse the VECb rperator
to reduce each member of the hierarchy of bounds to a low-order modified Lyapunov equation for

the matrix majorant of the second-moment matrix.

We now consider in more detail the first two members of the majorant hierarchy in order to
illustrate the specific forms of the modified Lyapunov equations that are obtained. For example,
Figure 2.0-12 shows the first member of the second-moment majorant hierarchy. This gives the
majorant Q as the solution of a simple nonnegative matrix equation, where * denotes the Hadamard
(element-by-element) product and the dimension of the equation is the number of subsystems. For
the norm-bounded uncertainty set shown in Figure 2.0-12, the existence of a nonnegative solution
implies a bound for the block-norm matrix of the second moment in addition to robust stability,

i.e., A+ G is stable for all perturbations G in the norm-bounded set.

One particular advantage of the first member of the hierarchy is that it correctly shows the
effect of wide frequency separation of subsystems on performance degradation and robust stability.
This effect is illustrated in Figure 2.0-13. Here we have two subsystems whose poles are indicated
by the crosses in the complex plane, with v, and v; denoting the damping of the subsystems and
w)—-wy the separation in frequencies. The majorant equation in Figure 2.0-12 gives the expression
shown in Figure 2.0-13 for the square of the tolerable interaction strength under which stability
is preserved. Thus, if the frequency separation (wi-w;) is large, then even very large uncertain

interactions can be tolerated. In contrast, the vector Lyapunov function theory of [2.7,2.8] would
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Figure 2.0-10. Idcntities for the Block Kronecker Algebra
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0 = (A+G)Q + Q(A+G)T + V

<
vec Qll vec V11
(v + pl vec 022 = vec V22
vec er vec Vrr

v € - block-diag (A, & A)
k=l...r

p2gfcoadn ® a+c ® cl'lgc @ ag

Letting £ £ Q170 Coprecely )i y & (Viyr Vopre«eV, ) apply majorant

analysis to get a hierarchy of bounds for the majorant of vecbd (Q:
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v -€C ® OEA & A-C ® CITNEC © AEIL= 7
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[vz -legf =7

no

v+eTic @ e ® e ®© of

Ry
nw

,28% @ o @ NG @ cir ® A+c @ GITE ©

Figure 2.0-11. A Hierarchy of Majorant Bounds for the Second-Moment Matrix
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= Robust Performance

Figure 2.0-12. Majorant Lyapunov Equation
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ROBUSTNESS DUE TO WEAK
SUBSYTEM INTERACTION

MAJORANT LYAPUNOV EQUATION BOUND ~y{vy 4v)2 4 (07 - ©2)2

Figure 2.0-13. Robustness Due to Weak Subsystem Interaction
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give v + v; which is a much more conservative result for lightly damped systems. Thus, the
majorant equation will correctly predict that as frequency separation becomes sufficiently large,
subsystems become effectively decoupled. Such predictions cannot be made by either the small
gain theorem for large-scale systems or by vector Lyapunov theory. Thus, even the first member

of the majorant hierarchy offers greatly reduced conservatism compared to previous results.

Moreover, note that thanks to the properties of M-matrices, the first (and all higher) members
of the hierarchy of majorant bounds require only a simple iterative sequence for their computation.
The relevant facts are summarized in Figure 2.0-14. The sequence is monotonically nondecreasing,
and each iteration requires only two matrix additions, two multiplications and a Hadamard product
for its computation. Convergence of the sequence implies robust stability while the degradation of
a quadratic performance index J from its nominal (zero interaction) value J, is given in terms of

Q by the simple expression at the bottom of Figure 2.0-14.

Furthermore, the second member of the second-moment majorant hierarchy, shown in Figure
2.0-15, gives even tighter bounds and can even predict the nondestabilizing effect of certain kinds
of perturbations. The form of the majorant equation (top of Figure 2.0-15) is similar to the
first member of the hierarchy except that the operator ¥[Q] appears. This operator is precisely
what would arise in the equation for the second-moment matrix for a system with Stratonovich
multiplicative noise parameters! So far, we have discussed a design analysis tool for predicting
performance degradation due to uncertainty. This crucial observation brings us to consideration of

the link between majorant robustness analysis and MEOP design synthesis theory.

Figure 2.0-16 illustrates this link and the accompanying sequence of logical developments.
Overall, one may regard the MEOP design synthesis theory as arising from a particular robustness
analysis tool. Although any member of the second-moment majorant hierarchy might be chosen as
the basis of a design synthesis theory, we choose the second member of the hierarchy (see the lower
right block in Figure 2.0-16) to serve as the point of departure since it is the simplest bound that
also handles nondestabilizing uncertainties. Referring to the lower left block of Figure 2.0-16, it is
seen that the second-moment equation of a multiplicative Stratonovich noise model essentially gives
an approximation to the majorant equation end a smooth optimization problem. The Stratonovich
second moment equation then leads to an auxiliary optimization problem (upper left block in Figure
2.0-16), namely, choose dynamic compensator gains to minimize the quadratic performance of a

system having multiplicative stochastic parameters. Because of the Stratonovich modifications to
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A
MLE has a unique solution Iff {Qk, K=0, 1, ..., =} where: =
A
Qo=0
A A A
Qi1 =AM (G Qx + QST+
(A & A~ Tan)
converges. if so, then:
A A
Q= lim QK ‘
K—oo

r A /\
J-Jg =<2 (tr P)(SQKK

=94 -

0= ATK Pt Pl + Ry

Figure 2.0-14. Numerical Solution of the Majorant Lyapunov Equation
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L
- Second member of the hierarchy:
AN AA A ~
A*Q+HIQY = §<Q>+<Q>GT +V
J - tr[QR] < 23, (tr P)(5<Q>)KK
K=1
. 0=AG + QAT + H[Q] +V
0=ATP + PA + HI[P] +R
where: A A
<Q> £ off-diagonal part of Q
5 HI[.] = Stratonovich model operator
= Tighter bound—incorporates more information on A and G
= Predicts stability when (A + AT) stable, G = -GT
. s “Nominal” performance, tr [GR], given by Stratonovich model

Figure 2.0-15. Second Member of the Majorant Hierarchy

2-21




Auxilliary Optinization Problem

EaT +#10) + v

o
L}
>
L@]]
+

tr [QR]
A -EK

ca
1]

FC Ac

Find K,F,A_ to minimize J

i

Stochastic Design Model

Stratonovich 2nd Moment Equation

0 = AD + ORY + M[E) + V
{0y << Ho

IO -3, <3 -3,

OPME Design Equaticns

\ Y SIS AR A Ty
CSA'G~OA.040 'v‘-('rna”w(wlh-., "u'h‘n"f 1

B
WVaea

IR 2 - -1 T,
L "0’ cPA . Te.. Rye (e, )f"‘“‘a'h" - ':'h (R ':' L‘l'l

h g

Va.a IR P T
[ X3 (A.-l.l.. .)0 . O(A.-l.nb AR ,,‘vb;‘. u_..v \

-1
e

RINE F e Tt 7,7a3
L N PN R LR LR A PR AR L7 YA

5o
CE L nioe

Majorant Hierarchy

Oth: (9-13)6 + E,(;.;,,T +7V =0
ist: A*a =200 + 63 +V
2na: A*C + 2, (0)

= Q> + <L +V

3ra: A*é +}23[Q] = e

Figure 2.0-16. Majorant Hierarchy and Stratonovich Models:
the Link Between Analysis and Synthesis
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the standard form of the Lyapunov equation that appear in the equation for @, the robust stability
condition implied by the majorant equation is still enforced since the optimization problem imposes

a robust performance constraint.

The optimization of an epparently stochastic system actually approximates the majorant bound
which was derived purely deterministically and leads to the rather elegant MEOP optimality con-
ditions given in the upper right block in Figure 2.0-16.

Of course, the use of Stratonovich stochastic models was earlier indicated by maximum entropy
principles and stochastic approximation theory, and this line of development still stands. But the
import of the more recent majorant analysis developments is that there is a direct link between
maximum entropy stochastic modeling and deterministic performance bounds. This link strength-
ens the foundations of MEOP synthesis theory and, most importantly, tends to blur the distinctions
between stochastic and deterministic points of view. This is just as well since the task confronting
the systems and control theory community is not to resolve the stochastic versus deterministic
debate one way or the other, but rather to rise above it. As the work described here suggests, there

is a plane upon which the points of view are numerically indistinguishable.

2.1 Additional Extensions of Majorant Analysis to Frequency-domain Analysis
and to Time-domain Transient Response
The previous section outlined the general majorant theory in an operator setting, discussed its
application to the bounding of uncertainty effects on statistical response, and noted the connections
between second-moment majorant analysis and MEOP design synthesis theory. Here we discuss
additional developments of majorant theory which go beyond considerations of any particular design

synthesis approach to provide new and more powerful tools for system robustness analysis.

The first of these applications concerns the use of majoranﬁs for frequency-domain robustness
analysis. Here, we specialize to linear, time-invariant systems and assume L, system inputs and
outputs. Referring to the notation of Figure 2.0-2, let p = 2, and

|LlL, = sup |L(iw)|a, (2.1-1)
wGIR

where [(s) is a partitioned matrix of transfer function blocks and |- [; denotes the block-norm
matrix associated with the matrix 2-norm. Instead of dealing with £(¥) and £*(¥) directly, we
seek £(¥,w) such that

L, w) >> sup |[L(iw)|s = L*(¥,w).
HeN
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In other words, we determine frequency-dependent bounds on subsystem transfer function blocks so
that the block-L; norm bounds are then easily obtained via relation (2.1-1). This approach permits
considerable insight into the impact of subsystem frequency response and generalizes singular-value

analysis.

Reference (112] specialized the majorant hierarchy of Figure 2.0-5 to the above setting to pro-
duce a frequency domain majorant analysis which can nonconservatively address highly structured
uncertainties. Numerical results given in [112] illustrate convergence of the frequency domain ma-
jorant hierarchy to nonconservative bounds which are clearly superior to singular-value analysis

and previously developed large-scale system methods.

A further extension of majorant analysis is concerned with analyzing the impact of uncertainties
on system transient response in the time domain. In essence, we specialize the formulation of
Figure 2.0-2 to L, input and output spaces. In other words, system inputs and outputs are
characterized as functions which are pointwise bounded in time. The general majorant hierarchy
has been specialized to this case both for continuous-time and discrete-time systems. Because
of its direct applicability to numerous current spacecraft pointing design problems, its utility in
establishing system identification requirements, and its potential for extension to nonlinear control

system analysis, we discuss the discrete-time system majorant analysis results in more detail below.

Figure 2.1-1 depicts the basic formulation and motivation of the discrete-time majorant analysis.
Here, as before, we use a subsystem decomposition representation where the actual system differs
from the nominal system model via an uncertain interaction matrix G. Typically, we suppose that
the block-norm of G is bounded by some nonnegative matrix G so that G describes the magnitude
of the modeling uncertainties. More highly structured sets for G have also been considered. The
principal goal of the discrete-time majorant analysis is to determine a worst case bound on the
off-nominal prediction error, E(k) £ z(k) — (k) as a function of the discrete-time index when G
ranges over the set of uncertainties (i.e., |G| << G). To do this, the general majorant hierarchy of
Figure 2.0-5 has been specialized to this setting. Figure 2.1-2 explicitly shows that the Oth order
majorant is essentially a vector Lyapunov bound and the 1st member can be shown to be always
less conservative than the Oth order bound. Note that all these majorants represent upper bounds

for the exact worst case off-nominal prediction error E*(k), where E*(k) is defined as

E* (k) £ sup |z(k) - 2(k)|.
Geg
Beginning with the first-order majorant, there is an associated lower bound for E*(k). In other
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TIME DOMAIN MAJORANT

Txyy AT+ G+, z0=0

ACTUAL SYSTEM A = diag {A,}; A, stable
G=(G); |G|<<GeRyY™

NOMINAL SYSTEM {%uy1 = AZs +vs, To=0

§ GIVEN THAT | G |<< G, WHAT IS THE WORST CASE BOUND ON z, - %, = E;?

MORE SPECIFICALLY, FIND A NOT-TOO-CONSERVATIVE E(k) € IR] SUCH THAT:

| zelk) ~ Zelk) |< Exl(k)

VG G|<< G

Figure 2.1-1. Time-Domain Robustness Analysis Problem

2-25




TIME DOMAIN MAJORANT
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Figure 2.1-2. Time-Domain Majorant Bound
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words, the first-order and higher order majorant bounds produce two nonnegative matrix functiops

of time E(k) and E(k) such that
E(k) << E*(k) << E(k).

Thus, the theory provides not only an upper bound on prediction error but also a measure of

conservatism of the bound, i.e., E(k) - E(k).

To illustrate the capabilities of the time-domain majorants, we discuss an example given in [91].
This example, depicted in Figure 2.1-3, considers a tracking problem where a flexible spacecraft
with a rigidly mounted antenna must track a target through an encounter which takes 5.0 seconds
and covers 180 degrees. To illustrate the systemn analysis aspect of majorants, we suppose that the
tracker control loop was designed taking into account only the rigid body dynamics and that all
that is known about the dynamics is that there are modes above 20 Hz with specified bounds on
the elastic modal coefficients associated with the tracker sensor and thrusters. Given this rather
crude knowledge of the elastic modes, it is required to determine how much the actual closed-loop
tracking performance can deviate from the predictions of the nominal, rigid-body model. Thus, we
illustrate not only the effects of uncertainty but also the utility of majorants in ascertaining the
impact of unmodeled dynamics. An additional objective is to indicate how majorant bounds can
be used to determine the quality of system identification necessary to support system certification

for Right.

Details of the problem formulation and the analytical setup are given in [91]. Figures 2.1-4a,b
show final results for various cases in which the first-order majorant bound has been applied. In
each of these graphs, we show five curves. The central curve is the trajectory predicted by the
nominal model which includes only the rigid body dynamics; in addition we plot the nominal
trajectory plus or minus the upper bound E“(k) on the exact worst-case prediction error; finally, we
also show the nominal plus or minus the lower bound E(k) on the exact worst case error E*(k).
Note that despite the uncertain elastic mode effects, the actual system trajectory is certain to lie
between the outermost curyes. Thus, majorants predict not merely a single trajectory, but rather
a “tube” or band wherein the actual trajectory must lie. Furthermore, note that in all cases the
curves representing nominal + £(k) and nominal + E(k) are relatively close thereby indicating that
the upper bound on the prediction error entails very little conservatism. In particular, in cases 1,
3 and 4, the curve corresponding to upper and lower bounds are so close together that they cannot

be distinguished.
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Figure 2.1-3. Spacecraft Tracking Example
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Referring to Figure 2.1-4a, in particular, cases 1 and 2 show how increasing the controller
bandwidth (from 1.0 Hz to 5.0 Hz) reduces the nominal target tracking error but increases the
prediction error for a given amount of elastic mode uncertainty. This illustrates the use of ma-
jorant analysis to help determine controller bandwidths appropriate for the precision of modeling
information. Cases 2 through 4 show how Jecreasing the elastic mode uncertainty decreases the
performance bounds. In going from case 2 (Figure 2.1-4a) to case 4 (Figure 2.1-4b) the uncertainty
is reduced by an order of magnitude each time. This shows the capability of majorant analysis to
ascertain the precision of system identification that is required to attain a given level of guaranteed
performance. In the present example, it is see that a 20 multi-radian tracking specification would

require a system ID test that reduces model uncertainty by an order of magnitude.
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3.0 MEOP Design Synthesis Extensions to Decentralized/Hierarchical Control
3.1 Review of Centralized Theory

Optimal projection control-design theory has undergone considerable development over the past
several years. As shown in Figure 3.1-1, optimal projection theory now encompasses problems in
reduced-order, robust modeling, estimation and control in both continuous-time and discrete-time

settings. A comprehensive reference list appears in Section 5.0.

For control-design purposes optimal projection theory provides new machinery for synthesizing
multivariable feedback controllers. This machinery consists of a system of algebraic design equations
which characterize optimal feedback controllers while accounting for both controller order and
parameter uncertainties. The design equations consist of a system of two algebraic Riccati equations
and two algebraic Lyapunov equations coupled by both an oblique projection and uncertainty terms.
The Riccati equations are directly related to the pair of separated Riccati equations arising in LQG
theory. Indeed, when the controller order is set equal to the order of the plant and all uncertainties

are absent, then the design equations specialize immediately to the standard LQG equations.
3.2 Extensions to Decentralized Controllers

In keeping with the optimal projection philosoi)hy, our approach to decentralized control design
is based upon fixed-structure optimization. That is, we assume that the structure of the controller
is determined by implementation constraints and/or subsystem analysis. Once the controller ar-
chitecture is fixed, the feedback gains can be chosen to optimize the performance functional for
the closed-loop system. This approach can be used to determine preferable controller architec-
tures by varying the decentralized information structure and optimizing the performance of each

configuration.

The fixed structure approach is distinct from methods which are based upon subsystem de-
composition with centralized design procedures applied to the individual subsystems. For such
methods there remains the problem of determining conditions under which the reassembled closed-
loop system has acceptable behavior. An additional drawback of decomposition methods is that
the decentralized controller architecture specified by implementation constraints may be completely
unrelated to desirable architectures arising from dynamical considerations. For example, physical
implementation constraints may impose a particular decentralized architecture which does not cor-

respond to any discernible dynamical decomposition. Furthermore, subsystem decomposition as a
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design tool may constrain the class of attainable designs at the expense of achievable performance.

Of course, in many cases, such as the presence of high dimensionality, subsystem decomposition
is absolutely essential for making progress in designing decentralized controllers. However, only by
developing methods which avoid unnecessary constraints on the design space can the efficiency of
decomposition methods be assessed. Furthermore, methods which retain the full system dynamics
may provide a useful starting point for applying existing decomposition techniques as well as the

means for developing new methods.

Our overall approach is thus to regard the fixed-structure approach as complementary to sub-
system decomposition techniques. To this end, majorant robustness analysis has been developed
(see Section 2.0) to account for subsystem interactions arising, for example, from system uncertain-
ties. In addition, majorant robustness analysis is closely related to MEOP synthesis particularly

with regard to nondestabilizing uncertainties.
3.2.1 Decentralized Controllz: Design for Static Controllers

We first consider the problem in which each subcontroller is assumed to be static, ie., a
fixed gain multiplying the measurements. For realism, of course, only the physical measurements
are assumed to be available for feedback. Earlier versions of this problem were considered in
(3.1,3.2]. The most general treatment of this problem obtained thus far can be found in [122].
The development in [122] includes, in particular, noisy and nonnoisy measurements, weighted and
unweighted controls, and parameter uncertainties in the A, B, and C matrices. The optimality
conditions for this problem are given in the form of a pair of modified Riccati equations coupled by a
pair of oblique projections corresponding, respectively, to singular measurement noise and singular
control weighting. By utilizing a Lyapunov function to guarantee robust stability, these optimality
conditions serve as sufficient conditions for robust stability and performance over a specified range

of parametric uncertainty.
3.2.2 Decentralized/Hierarchical Controller Design for Dynamic Controllers

A more complex situation arises when the decentralized subcontrollers are allowed to be fixed-
order dynamic controllers. As an additional element of complexity, we assume the various decen-
tralized dynamic controllers are combined within a general multiechelon hierarchical control (MHC)
structure, illustrated conceptually in Figure 3.2.2-1 which is given in [3.4]. This is the most general

arrangement of decentralized control elements and consists of a number of subsystems situated in
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levels such that each one can coordinate lower-level units and be coordinated by a higher-level
one. Previous work, described above, which considers a purely decentralized (but nonhierarchical)
architecture, represents the special case of Figure 3.2.2-1 in which only the first hierarchical level

is present.

Specific realization of an MHC system within the context of linear dynamic compensation is
illustrated by the typical configuration shown in Figure 3.2.2-2a. Here compensators on the first
level interact directly with the large scale structure to be controlled. Compensators on higher

levels receive linear combinations (defined by the matrices D;‘)) of the direct sensor mesurements

1

(v

control signals (ug.'.)), which serve to coordinate and reconcile the (sometimes competing) actions

)) and the dynamic states (q;")) of the lower-level compensators as inputs and produce output

of the lower-level compensators. The disposition of control inputs, measurements and the matrices
Dg.‘), E}‘) defining each coordination level are defined by practica! implementation and communica-
tion constraints. The important motivations for the MHC arrangement are to reduce processor cost
and complexity by breaking up the processing task into relatively small pieces and to decompose
the fast and slow control functions. Typically, the lower levels involve relatively simple compen-
sation but relatively high bandwidth, while the upper levelé may utilize more nearly centralized
and higher-order compensation with relatively low bandwidth. To reduce individual processing
burden, it is essential that for each subcontroller, the number of inputs (yJ(-i)), outputs (u§~‘)) and

the dimension of the compensator be relatively small.

Figure 3.2.2-2b defines the problem further by defining the generic arrangement of the jth
dynamic compensator on the ¢th hierarchical level. It is seen that each compensator is of the form
of an output feedback dynamic compensator whose dimension n{*7) is a fixed number determined by
implementation constraints. We address the quadratically optimal multiechelon hierarchical, fixed-

order control design problem, i.e., choose the gain matrices Ag(;: ,B,S:),C.Sj) ,fort =1,...,M and
J=1,...,N; for all the dynamic compensators to minimize a steady-state quadratic performance

index subject to the selected MHC configuration and the compensator dimension constraints.

This optimization problem is nonconvex and displays multiple local extrema. Figure 3.2.2-3
illustrates the general difficulties and indicates our overall strategy for solving such nonconvex opti-
mization problems. The two-state strategy consists in (1) computing all extremalizing designs, i.e.,
control gains for which -ﬁ%{;— = a—?ﬁ% = %‘E{; = 0, by solving the first-order necessary conditions

(FONC) for the optimizatio;l probler’n and th’en (2) selecting the design which is determined to have
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the smallest quadratic cost. Although this approach avoids the pitfalls of gradient search methods
and can guarantee global optimality, its feastbility requires that the number of FONC solutions be
relatively small (no more than one, ideally) and that there exist effective algorithms for computing

the FONC solutions.

Immediately below we discuss results on the derived forms of the FONC and then address
questions about multiplicity of solutions and effective solution algorithms in the remainder of this

section and in the following section.

First, the overall FONC comprise the set of al! first-order necessary conditions for each sub-
controller individually. Figure 3.2.2-4 shows that the formulation of the FONC corresponding ‘o
compensator (1, 7) (7th controller on the ith hierarchical level) is ezactly identical to the formulation
of first-order necessary conditions for a single centralized, fixed-order compensator for an “equiv-
alent plant” which comprises the dynamics of the original plant and all the other subcontrollers.
The necessary conditions for this “equivalent” centralized design problem are well known by virtue
of the earlier MEOP development. Thus, we immediately obtain for the (1, s)th compensator the
FONC shown in Figure 3.2.2-5a,b.

Thus, the first-order necessary conditions of the quadratically optimal MHC design problem
decompose into sets of four nonlinear matrix equations (Figure 3.2.2-5b) involving one set of four
equations for each of the subcontrollers in the multiechelon hierarchical system. Each set of four
equations has a form identical to the four MEOP design equations for centralized design, namely,
two modified Riccati and two modified Lyapunov equations, all coupled by an oblique projection
(%) which characterizes the geometric structure of the (1, )th fixed-order compensator. These

results directly generalize earlier results for the purely decentralized problem in [76].

Clearly, the overall FONC will display multiple solutions (since this is the case for fixed-order,
centralized design) corresponding to the various local extrema. The decomposition of the FONC
noted above shows that the key to establishing the number of solutions is to determine the number
of solutions to the MEOP design equations for centralized fized-order compensation. Specifically, the
next section discusses new results which establish a generic upper bound on the number of solutions
to the MEOP centralized control design equations. Using these results, one can determine an upper
bound N 47 on the number of solutions to the matrix equations (Figure 3.2.2-5b) corresponding to

the (¢, 7)th compensator, where N (%9) is independent of the other subcontrollers. Then, considering
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all the first order necessary conditions, it follows that

Number of admissible solutions

M N;
to the FONC for the < H H N6
t=1g9=1

MHC design problem

We shall see that in many practical situations the above number is quite small (indeed, unity in
most instances) so that the solution strategy of Figure 3.2.2-3 is feasible and can effectively produce

the globally optimal solution.

Also, the structure of the first-order necessary conditions for the MHC problem suggests a
solution algorithm consisting of the sequential solution of centralized, fixed-order design equations
for each subcontroller in turn. We have developed an effective MHC solution algorithm by first
constructing efficient homotopy solution algorithms for the centralized design problem and then
applying the results to the more general MHC problem. These matters are discussed in the next

section.
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4.0 Analysis and Solution of the MEOP Multiechelon Hierarchical Control
(MEOP-MHC) Design Equations

In Section 3.2.2, we described (see Figure 3.2.2-3) how the quadratically optimal, fixed-order
multiechelon hierarchical control problem can be reduced to (1) determination of all admissible
solutions of the MEOP-MHC design equations (Figure 3.2.2-5b) and (2) selection of the solution
for which the quadratic cost is minimal. As noted, the feasibility of this approach depends on satis-
factory answers to questions concerning multiplicity of solutions as well as the existence of effective
solution alogrithms. However, from the structure of the MEOP-MHC design equations noted above
we have discovered that optimal MHC dynamic compensator design can be viewed as a collection of
subcontroller designs obtained for an augmented system. Essentially, each subcontroller is viewed
as a reduced-order controller for the plant augmented by all other subcontrollers. This problem is

thus a direct application of centralized MEOP design theory.

In Section 4.1 we review results for the MEOP centralized design theory wherein effective
solution algorithms are developed and then show, in Section 4.2, how these centralized design

results are applied to resolve residual issues in the MHC design problem.

4.1 Homotopic Continuation and Degree Theory for
Optimal Fixed-Order, Centralized Control

Here we return to consideration of the optimal fixed-order dynamic compensator design prob-
lem, approached via solution of the MEOP centralized design equations. Note that this is also
a nonconvex optimization problem with multiple extrema. Thus the number of solutions, their
stability properties, and determination of the global minimum are important issues. It seems clear
that any attempt to address these issues must utilize mathematical methods which are global in
nature. To this end, we have applied topological degree theory and associated homotopy methods
(see [4.1-4.3]) to analyze the solutions of the MEOP centralized design equations and to construct
convergent solution algorithms. In essence, a homotopic continuation method involves first solving
an “easy” problem, then continuously deforming the easy problem into the original problem, and
finally following the path of solutions as the easy problem is deformed into the original problem.
This is shown conceptually in Figure 4.1-1 where the dashed lines also indicate several pathologies
that can occur. Here t is the continuation parameter, t = 0 represents the easy problem, and t = 1

corresponds to the original problem to be solved.

In [63,68], Richter formulated a homotopy method and then applied topological degree theory
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to develop a homotopy method for solving the MEOP equations for which the dashed lines in
Figure 4.1-1 cannot occur. That is, the only solutions to the MEOP design equations at t = 0 (or
for 0 <t < 1) are those which are continuously derived from the solutions at t = 0. Furthermore,

the MEOP equations possess at most
(min(n,m,t) -n,

o — 1y ), n. < min(n,m,¥£),

1, otherwise,

stabilizing solutions where (:) is the standard combinatoric notation, n, denotes the dimension of
the unstable subspace of the plant, n is the plant dimension, m the number of control inputs, £
the number of sensor outputs, and n, is the desired dimension of the compensator. Moreover, each
such solution is reachable via a homotopic path. Finally, if the plant is stabilizable by means of an

n.th-order dynamic compensator, then there exists at least one solution to the design equations.

Note that if n. is larger than the number of inputs or outputs, then there is only one solution
to the MEOP equations and this solution corresponds to the gioba.l minimum of the quadratic
performance index. Also note that Richter’s homotopy algorithm permits the a priori selection
of a starting solution (all starting solutions being known in closed form) leading to an admissible,
final solution. Hence, even when n, < min(n,m,£), one can compute all solutions, then pick the

solution corresponding to the smallest quadratic cost.

An additional benefit of the homotopy algorithm is the ability to exploit the structure of the
design equations to an even greater extent than the iterative algorithm. Specifically, Richter has
shown that the computational burden using the homotopy methods involves solving four equations
of order n. x n. Hence, the computational requirements decrease as n, decreases. This is, of course,
quite pleasing since low-order controllers ought to be easier to design than high-order controllers.
For MHC design this property is particularly advantageous since it will generally be true that

n. << A where fi is the plant dimension augmented by all other subcontrollers.

Since the computational burden of the iterative algorithm tends to increase as n, decreases, the

advantages of the homotopy algorithm over previously developed iterative algorithms are obvious.

Computational savings have been at least an order of magnitude and final convergence has been
greatly improved. Moreover, the example considered in [4.4] and [94] was reconsidered using the
homotopy algorithm in [63,68]. The main result was the ability to produce controllers as low
as second order at control authorities which were three orders of magnitude beyond the cases !7

considered in [4.4] and [94]. In each case the performance of the reduced-order controller was
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within 20 percent of the full-order design.

In summary, the homotopy and degree theory results render feasible the solution strategy for
optimal fixed-order compensation shown in Figure 4.1-2. This directly parallels Figure 3.2.2-3.
Here, we compute all extremal designs by solving the FONC in the form of the MEOP design
equations. Degree theory shows that the number of solutions is typically small and homotopy
algorithms provide efficient methods for computing the solutions. Thus, effective methods exist to
carry out step 1 in Figure 4.1-2. Step 2 is relatively straightforward and its completion yields the

globally optimal solution to the nonconvex optimization problem.

It is evident that the homotopy results for fixed-order centralized control represent a powerful
vehicle for successfully addressing the optimal, fixed-order multiechelon hierarchical control prob-
lem. The manner in which these results have been adapted to the MHC problem is described in

the next section.

4.2 Application of Homotopy and Degree Theory to
Optimal Multiechelon Hierarchical Control Design

We now return to the questions raised in connection with the strategy for solving the optimal
MHC design problem depicted in Figure 3.2.2-3. We first examine how many solutions exist to the
MEOP/MHC design squatiors shown in Figure 3.2.2-5b.

Clearly, the first-order necessary conditions for the (1, j)th subcontrollers are identical to the
MEOP design equations for a single fixed-order controller in the presence of an augmented plant
consisting of the original plant and all other subcontrollers. Thus the degree theory results on
the centralized design problem can be applied to this case. For the (i, 7)th sucontroller, let m(%?)
denote the dimension of ug"‘) and £(%9) the dimension of yg.'.) (see Figure 3.2.2-2b). To simplify
this outline of results, we assume an open-loop stable plant and suppose that the dimension of
the augmented “equivalent plant” for the (i, 7)th compensator is larger than either m(*:7) or £(.4),
Then under these rather typical conditions, the degree theory results described in the last section

can be utilized to show:

Number of admissible solutions

to the MEOP-MHC design M Nm
<1 I ~ve (4.2-1)

equations (equivalent to the §=1n=1

FONC for the MHC design problem)
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NGI) = { (mm(m ) )), ng:.) < mm(m( .J)’l(t.J))
1, otherwise,

When it is recalled that the design of simple subcontrollers requiring little on-line computation
necessitates a decentralized control structure in which the number of subcontrollers inputs and
outputs is small, it is seen that N ) is typically a small number. Also, if either m(*9) or £(%9) ig

small (say < 4) for all ¥ and j then one can choose
and still have compensators of acceptably small dimension.

If the above choices can be made for the dimensions of all the subcontrollers, then N () is
unity for all 1,5 and the MEOP-MHC design equations have, at most, one solution. Moreover, one
solution always exists since for a stable plant, a stabilizing MHC design exists and there is at least
one extremalizing design. Since the MEOP-MHC equations are the first-order necessary conditions,
they have at least one solution under a stabilizability assumption. Thus, under the conditions
postulated, the MEOP-MHC design equations have a unique solution and this corresponds to the

global minimum of the performance index.

The above results render step 1 in Figure 3.2.2-3 feasible. Even if N“9) > 1, practical con-
straints on m(¥9) and £(%9) will tend to keep the total number of admissible solutions to within a

manageable level.

Next, retaining assumption (4.2-2) we consider the application of the centralized design homo-
topy algorithm discussed in the previous section to MHC design. The structure of the MEOP-MHC
equations immediately suggests sequential design as in [4.5-4.7] whereby the equivalent centralized
design problem is solved for each individual subcontroller in turn. Specifically, let each (1, 5) corre-

spond, one to one, to an integer k, where k =1,..., Ny, where

is the total number of subcontrollers. With this re-indexing of the subcontrollers, consider the

following algorithm:

Start: Choose any set of stabilizing gains (in the present case, it suffices to choose Ag? =

B =c¥ =0, forall (i,5)) and let k=1and L = 1.
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1.A Apply the homotopy algorithm to solve the MEOP-MHC equations for the kth subcon-
troller, i.e., solve the equations shown in Figure 3.2.2-5b (with (4.4-2), the solution is

unique).

B Update the gains for the kth subcontroller using the expressions in Figure 3.2.2-5a and

incorporate these within the closed-loop system model.
C Compute the overall closed-loop cast J.

2. If k < Nr, increment k by unity and go to step 1. Otherwise, increment L by unity and
go to 1.

The above establishes an infinite sequence of redesigns and a corresponding sequence of closed-
loop costs {J(k,L); k=1,...,Nr, L=1,...,00}. It is easily seen that J(k, L) is monotonically
nonincreasing. This occurs because step 1.A is the solution of a centralized, fixed order optimization
problem and the value of J cannot increase following a redesign. Since {J(k, L)} is a monotonic
nonincreasing sequence which is also inherently nonnegative, it converges to a nonnegative value.
This implies also that the sequence of subcontroller gains converge and, by virtue of step 1.A,
the values to which they converge satisfy the full MEOP-MHC design equations. This solution
can be shown to be unique and corresponds to the globally optimal design. Thus, under the
conditions postulated, the above general algorithm involving sequential redesign and directly using
the homotopy algorithm for centralized MEOP design is seen to converge monotonically to the
globally optimal design. The questions raised in Figure 3.2.2-3 are answered quite satisfactorily
and the overall solution (which now parallels Figure 4.1-2 for centralized design) is seen to be
practically feasible and (thanks to the homotopy algorithm) effective and efficient.

The above resuits also follow for open-loop unstable systems if, in the above algorithm, one
starts by first designing the highest level controller (the supremal coordinator) to stabilize the
system. The general case ng) < rrlin(m(""),l(‘-")) has not been extensively investigated and must

remain the object of further research.

Also, note that the sequential redesign algorithm does not presuppose any particular order in
which the subcontroller redesigns are to be carried out. There are many possibilities. One could,
for example cycle through all subcontrollers in some order within a given iteration. Alternatively,
in what might be called the “echelon scheme,” one might iterate only the compensator designs in

a given hierarchical level (keeping designs in other levels fixed) until there is convergence for that
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level and then move on to another hierarchical level. How each such ordering and iteration scheme
affects the rate of convergence is just beginning to be appreciated. Only limited design experience
has been acquired to-date and much remains to be done to establish the ordering of the sequential

redesign steps which will, for any given problem, promote the most rapid convergence.
4.3 Decentralized /Hierarchical Design Examples

To illustrate the ideas developed in the previous sections, we have carried out detailed numerical
calculations for two design problems. The first example involves a pair of interconnected flexible
beams while the second involves a deployable truss structure. For each problem a decentralized
controller was designed using the sequential design algorithm developed in the previous sections.
Although only single echelon designs were considered, the extension to multiechelon controllers is

straightforward.

The first example involves a pair of simply supported Euler-Bernoulli flexible beams intercon-
nected by a spring and constrained to vibrate in one spatial dimension (see Figure 4.3-1 and (76]).
Each beam possesses one rate sensor and one force actuator which are noncolocated. No special
requirements were imposed on the locations of the sensors, actuators, and spring attachment points
except to avoid nodes of the beam mode shapes. Two vibrational modes were retained in each beam
so that the interconnected system possesses eight poles. The interconnection spring was chosen to
be sufficiently stiff so that high authority local decentralized designs designed with the spring absent
suffered significant degradation when the spring was reinserted. To obtain high authority designs
we chose quadratic weights so that the closed-loop performance of the centralized controller yielded

an order of magnitude performance improvement over the open-loop system.

To design a decentralized controller we began by designing local 4th-order decentralized con-
trollers for each beam individually. Reinsertion of the spring resulted (as noted above) in significant
performance degradation. Each subcontroller was then redesigned alternatively yielding the results

given in the following table:
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Figure 4.3-1. Interconnected Beam Example for Decentralized Control
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Design Cost
Open loop 163-5
Centralized LQG n, = 8 19-99
Suboptimal decentralized n.;y = n.3 = 4 59-43
Redesign subcontroller 2 28-19
RedesigL subce roller 1 23-29
Redesign subcontroller 2 23-C4
Redesign subcontroller 1 22-25
Redesign subcontroller 2 21-94
Redesign subcontroller 1 21.86
Redesign subcontroller 2 21-81
Redesign subcontroller 1 21-79

It is immediately evident that each redesign step resulted in improved performance of the
decehtralized closed-loop system. As noted previously, this monotonic improvement is a direct
result of the fact that at each redesign stage a suboptimal subcontroller is being replaced by a
subcontroller which is optimal with respect to the augmented plant consisting of the actual plant
and remaining subcontroller. Finally, note that since each subcontroller involves one sensor and
one actuator, there exists at most one solution to the design equations at each redesign step. Thus

the sequence converges to the global minimum of the decentralized design problem.

As a second and more realistic example we consider the decentralized control of a deployable
truss structure (Figure 4.3-2). Unlike the previous example this structure does not involve phys-
ically identifiable subsystems. Rather, the motivation for a decentralized architecture arises from
the desire to minimize real-time communication among sensors and actuators located at differ-
ent points (bays) along the structure. Hence we consider a decentralized feedback architecture in
which each subcontroller involves only sensors and actuators located within a single bay. Although
subcontrollers do not communicate with one another by exchanging data, they do interact via the
dynamics of the structure. Modal data for the first 10 modes of the structure are given in Figure

4.3-3 while mode shapes are shown in Figures 4.3-4, 4.3-5 and 4.3-6.

In designing a decentralized feedback architecture we considered control instrumentation at
bays 23, 46 and 54 (tip). Specifically, for control we considered rate sensors and force actuators

at bays 28, 46 and 54 :long the z and y axes and at bay 54 about the z axis. Furthermore,
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Mode Frequency Modal Damping Mode Shape
Mode w v Description

1 0.179 0.002 1st z-z Bending
2 0.236 0.002 1st y-z Bending
3 1.270 0.003 2nd y-z Bending
4 1.320 0.003 2nd z-z Bending
5 1.460 0.005 1st Torsion
6 3.640 0.005 3rd y-z Bending
7 3.800 0.005 3rd z-z Bending
8 5.180 0.005 2nd Torsion
9 6.200 0.005 4th y-z Bending
10 6.410 0.005 4th z-z Bending

N4

Figure 4.3-3. Modal Data for the Deployable Truss Structure
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tst x~z Bending, (»0.1729 N2

Zno x~1 Bending, (= 1.32M2

3rg x-1 Bending, 1= 3.80H2
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4th x-z Bending, f= 6.4} Hz

Figure 4.3-4. Deployable Truss Structure Mode Shapes
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Ist y=2Bending, s 0.236M;

2nd y-2 Bending, 1 1.27H2
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3rdy-28ending, (s 3.64 Hz

4th y-2 Bending, fe 6.20 1

Figure 4.3-5. Deployable Truss Structure Mode Shapes (cont’d)
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Figure 4.3-6. Deployable Truss Structure Mode Shapes (cont’d)
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disturbances were assumed to be generated by actuators at bay 10 (along the z and y axes), bay
28 (about the z axis), and bay 54 (along the z and y axes and about the z axis). As a measure of
peri'ormance we considered the motion of the tip along the z and y axes and about the z, y and
z axes. Sensor noise levels and control signal weighting matrices were chosen so that a centralized
LQG controller reduced mean-squared variation to 1% of their open-loop levels. Note that such an

LQG controller is of 20th order and involves feedback loops between all sensors and actuators.

To produce a decentralized controller we constrained the architecture to involve three subcon-
trollers involving sensors and actuators at bays 28, 46 and 54 (see Figure 4-3.7). Each subcontroller
was constrained to be a 4th-order compensator. The sequence of evaluations and refinements
is shown in Figure 4.3-8. The final controller consisting of three 4th-order local subcontrollers
represented only an 8% cost degradation compared to the significantly more complex 20th-order

centralized LQG design.
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Procedure State Cost Control Cost Total
Evaluate Open Loop Cost 429 0 429 -
Design LQG Centralized Controller (n = 20) 297 1.28 4.25
Design LQG Single Channel Controller (n, = 20) B
with Bay 54 Instrumentation Only 3.08 1.42 4.50 -
(I) Design OP Single Channel Controller (n, = 4) -
with Bay 54 Instrumentation Only 5.94 1.34 7.28
Design LQG Single Channel Controller (n, = 20)
with Bay 46 Instrumentation Only 10.2 1.83 120
(II) Design OP Single Channel Controller (n, = 4)
with Bay 46 Instrumentation Only 10.2 1.97 12.2
Design LQG Single Channel Controller (n. = 20)
with Bay 28 Instrumentation Only 23.2 6.26 29.4
(I1I) Design OP Single Channel Controller (n, = 20)
with Bay 28 Instrumentation Only 23.3 7.04 30.3
Evaluate Performance of I + II + III N/A N/A 10.9
Evaluate Performance of I + II N/A N/A 7.72
Redesign II (I + II') 6.86 1.80 7.04
Redesign I (I' + II') 3.42 1.36 4.78
Evaluate (I’ + II' + III) N/A N/A 7.97
Redesign III (I’ + II' + IIV) 4.63 .034 4.66 .
Redesign I (I” + II' + III) 3.26 1.31 4.57

Figure 4.3-8. Sequential Decentralized Design Procedure for
Deployable Truss Structure
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Abstract

OPUS (Optimal Projection for Uncertain Systems) provides new machinery for
designing active controllers for suppressing vibration in flexible structures. The
purpose of this paper is to review this machinery and demonstrate its practical value
in addressing the structural control problem.

1. Introduction

For many years it has been widely recognized that the desire to orbit
large, lightweight space structures possessing high-~performance capabilities would
require active feedback control techniques. More generally, the need for such
techniques may arise due to the combinations of either 1) moderate performance
requirements for highly flexible structures with low-frequency modes or 2} stringent
performance requiremente for semi-rigid structures with relatively high-frequency
modes (Figure 1), Applications include pointing, slewing, and aperture shape control

for optical and RF systems.

CONTROLLER AUTHORITY AND OR
RESPONSE RANGE OF INYERESY

MODES
“Small” structures /\
» Older generation of spacecratt
* Mos! civil engineering structures ! ' J , “ l
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FREQUENCY —&
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tall buitdings. rapid transit
struclures. etc ! U -

And/or
s Siringen! pointing accuracy

and optical quality Wm

requirements
» Noise abatement (acoustical/
structurat interaction)

Figure 1, The Need for Active Structural Control Arises From
Stringent Performance Requirements cr Low-Frequency Modes
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Figure 2. Vibration Control Systems Utilize Sensors, Processors and Actuators
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to Suppress Disturbances

The problem of active vibration suppression (Figure 2) entails the

considerations:

Multiple, highly coupled feedback loops. The potentially large number of
sengors and actuators leads to a fully coupled mu.ti-input, multi-outputr

feedback control system.

Limited actuator power, The control authority evailable from on-board

actugtors is limited by weight, size, cost and power congideratjons.

High-dimensional models. Large structures subjecred to broadband

digturbances are typically represented by high-order finite element models,

Limited processor cepacity. Reliability and cosr considerations limit the
proceggor capacity avajlable for on-board real-time implementation of the

control system.

Highly uncertain models with structured uncertainty. Finite element models
often exhibit significant error particularly as modal frequency increases.
Although modal testing and related identification methods may be used to
improve modeling accuracy, residual uncertainty always remains and
unpredictable on-orbit changes due to eging, thermal effecte, erc., must be

tolerated.
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6. Stringent performance requirements. Since active space structure control
is most relevant in precision applicarions, it can readily be expected that

performance specifications will be particularly stringent.

7. Design efficiency. Because of implementation complexity due to the
presence of multiple loops, high dimension, and high levels of uncerteinty,
the control design approach should efficiently utjlize borh synthesis and

analygis techniques (Figure 3).

SYNTHESIS

ANALYSIS |4

Figure 3. Control-System Design Must Efficiently Utilize Both
Synthesis and Analycie Techniques

These considerations pose a considerable challenge to the srate-of~the-art
in control-design methodologiee., For example, the presence of multiple, coupled
feedback paths essentially precludes the effectiveness of single-loop design
techniques. The sheer number of loops, their interaction, and the need to address a

host of other issues render such methods inefficient and unwieldy.

In addition to the presence of multiple loops, the high dimensionality of
dynamic models places a severe burden on control-decign methodologies. For example,
alrthough LQG (linear-quadratic-Gaussien) design is applicable to multi-loop problems,
such controllers are of the same order as the structural model (Figures 4 and 5).
Thus LQG and similar high-order controllers can be expected to place an unacceprable
computational burden on the reasl-trime processing capability. Hence it is not
surprising thet a variety of techniques have been proposed to reduce the order of LQC

controllers. A comparison of several such methods is given in {1].

All of the above difficulries are severely exacerbated by the fact that the
dynamic (i.e., finite element) model upon which the control design is predicated may
be highly inaccurate in spite of extensive modal identification. Hence, applicable
control-design methodologies must account for modeling uncerteinties by providing

robugt (i.e., insensitive) controllers. Furthermore, because of etringent
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performance requirements, robust control design must avoid congservatism with respect
to modeling uncertainty which may unnecessarily degrade performance. A salient
example of conservatism is illustrated in Figure 6., If uncertainty in the modal
frequency is complexified in a transfer function setting, then the resulting pole
location uncertainty has the form of a disk. This disk, however, intersects the
right half plane in violation of energy dissipation. Hence one source of
congervatism is the inability to differentiate between physically distinct paramerers

such as modal frequency and modal demping.

im A
RIGHT-HALF-PLANE
1 POLES ARE PHYSICALLY
e IMPOSSIBLE
/
/
I é
I X
\
\
\
AN
\\\ A
T
Re A

Figure 6. Complexification of Real Parsmeters May Lead to Robustnees Conservatiam

Although classical methods are inappropriate for vibration control, a wide
variety of modern techniques are avajlable. These include both multi-loop frequency-
domain methods and time-domain techniques, A comprehensive review of such methods
will not be attempted here. Rather, we shall merely point out espects of several
methods which motivate the philosophy of OPUS development,

As it well known, dynamic models can be transformed (at least in theory)

between the frequency and time domains. Significant differences arise, however, in
attempting to represent modeling errors. Specifically, model-error charscterization
of a particular type, which is natural and tractable in one domain, may become
extremely cumbersome when transformed into the cther domain., For example, consider a
state space model with parameter uncertzinties arising in the system matrices
(A,B,C). Upon transforming t~ a frequency domain model G(s) = C(sI-A)-lB the

parsmetric uncertainties may perturb the transfer function coeffic ents in a

assssses
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complicated manner. A more natursl measure of uncertainry for transfer functions has
been developed in [2] where system uncertainty in the frequency domain is modeled by
means of normed neighborhoods in the H-infinity ropology. There are limitations with
this approach, however, in designing controllers for vibrastion suppression. For
example, as shown in Figure 6, complexification of real-parameter uncerraintjes such
as modal frequencies may yield unnecessary congervatism, while norm bounds often fail
to preserve the physical structure of parsmerer variations. A case in point ig the
1ighrly damped oscillator. As shown §n {A42]}, norm bounds predi.: stability over a
frequency renge on the order of the demping while in facr the oscillator is
unconditionally stable. Furthermore, with regard to processor rhroughpur tradeoffs,

modern frequency-domain methods typically yield high-order controllers.

Alrhough LQC addresses performance/actuator end performance/sencor
tradeoffs in a mulri-loop setting, it fails to incorporate modeling uncertainty.
Thus it is not surprieging, as shown in (3], that LQG designs fail to possess
guaranteed gain margin. Since LQG degignes lack such margins, attempts have been made
to apply frequency-domain techniques to improve their characteristics. One such
method, known as LQC/LTR ((4,5]) seeks to recover the gain marpin of full-srate-
feedback controllers. Specifically, full-state-feedback LQR controllers are
guarenteed to remain stable in the face of pertrurbations of the input marrix B of the
form oB where a€{1/2,0). Ag shown in {6,7), however, the full-srtate-feedback gain
margin fails to provide robustness with respect to perturbatijons which are not of
this form. For ingtance, the example given in [6] with B = (0 llT can be
destabilized for suitable performance weightings with perturbation B(€) = (€ l]T for
arbitrarily small € in spite of the 6 dB margin. Furthermore, since LQG/LTR loop
shaping is based upon singular value norm bounds, treatment of physically mesningful
real parameter varjatjonc may lead to unnecessary congservatism. Several approsches

have been proposed for circumventing these difficultjee (see, e.g., [8]).

The importance of addressing the problem of strucrured uncertainty in
finite element models cannor be overemphasized., Structural characteristics such ae
modal frequencies, damping ratios, and mode shapes appear explicitly in (A,B,C)
state—space models as physically meaningful parameters. Uncertainty in mode chapes,
for example, which appear as columns of the B matrix, cannot in general be expected
to be of a multiplicative form in accordance with traditional gain-margin
specifications. This is precisely the problem illustrated by the exarple of (6]
discussed above. Furthermore, uncertainties in modol frequencies and damping ratios
wust be carefully differentiated since, roughly speaking, modal frequency
uncertainties affect only the imaginary part of the pole location while demping

uncertainty affects the real part. Although these and related observationg
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concerning uncertainty in the dynamic characteristice of lightly damped structures
may be self evident, they have remained largely unexploited in standard control-

design methods.

2. OPUS: New Machinery for Control-System Design

In view of the ability of LQG theory to synthesize dynamic controllers for
multi-input, multi-output controllers, it is not surprising that LQG forms the basis
for a variety of structural control methods. However, as discussed previously, LQG
lacks the ability to address performance/processor and performance/robustness
tradeoffs. This situation has thus motivated the development of numerous variants of
LQGC which entail additional pre.edures which attempt to remedy these defects. OPUS,
however, is distinctly different. Rather than append additional procedures to LQG
design, OPUS extends LQC theory itself by generalizing the basic underlying
machinery.

As shown in Figure 5, the basic machinery of LQG consists of a pair of
separated Riccati equations whose solutions serve to directly and explicitly
synthesize the gaine of an optimal dynamic compensator. The contriburion of OPUS is
to directly expand this mechinery., The overall approach is illustrated in Figure 7
which portrays two distinct generalizations of the basic LQG machinery. As Figure 7
illustrates, thece generalizations can be developed individually when ejther low-
order or robust controllers are desired. The appealing aspect of OPUS, however, is

the ability to extend LQG to address both problems simultaneously in a unified

manner.,

LQG
2 RICCATI
(SEPARATED)

LOW-ORDER

CONSTRAINT PARAMETER

UNCERTAINTIES

us
2 RICCATI + 2 LYAPUNOV

op
2 RICCATI + 2 LYAPUNOV
(COUPLED BY UNCERTAINTY TERMS)

(COUPLED BY OPTIMAL PROJECTION)

LOW-ORDER
CONSTRAINT

PARAMETER
UNCERTAINTIES

OPUS
2 AICCAT} » 2 LYAPUNOY
(COUPLED BY OPTIMAL PROJECTION
AND UNCERTAINTY TERMS)

Figure 7. The Standard LQG Result Is Generalized by Both the Fixed-Order
Congtraint and Modeling of Parsmeter Uncertainties
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In the following sections the generalizations depicted in Figure 7 will be
reviewed following the left branch. That is, the optimsl projection approach to
reduced-order controller design will first be discussed in Section 3 withour
introducing plant uncertainties, In Section 4 the reduced-order constraint will be xa
retained while considering, in addirjon, uncertainties in the system model. In each

case the discussion will focus on the underlying ideas with a minimum of technical

detajl,

Clearly, in order for a novel design methodology to be of practical value
it must be computationally tractable. lence Section 5 will present an overview of
the current state of algorithm development for solving rhe OPUS design equations.
Finally, Section 6 will briefly summarize further OPUS generalizations of LQG theory

which are relevant to structural control.

3. Extengions of LQC to Reduced-Order Dynamic Compengation

The simplest, most direct way to obrein optimal reduced-order controliers
is to redevelop the standard LQC result in the presence of s constraint on controller
dimensjon (Figure 8). The mathematical technique required to do this is remarkably
straightforward., Specifically, the structure and order of the controller are fixed —
and the performsnce iz optimized with respect to the controller gains. The resulting
necessary conditions obtained using Lagrange multipliers thus characterize the

optimal gains.

HIGH-ORDER PLANT x.R"

Xz Ax+Bu+wy

y=Cx+wy

uRM yeR!

X = Acx *+ Bey

uzCexe

LOW-ORDER CONTROLLER xocR"E
STEADY-STATE PERFORMANCE CRITERION
J(AcB.Ce) = lim E[xTRyx + uTRau)

Figure 8. In Accordance With On-Board Processor Requirementsg, a Reduced-Order
Congtraint Is Imposed on the Dimensjon of the Dynamic Compensator
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This parameter optimization approach as such is not new and was
investrigated extensively in the 1970's. Typically, however, the optimality
conditions were found to be complex and unwieldy while offering little insighr and

requiring gradient search methods for numerical solution,

One curious aspect of the parameter optimization ljterature js that no
attempt was made to actually use this direct merhod to rederive rhe LQC resulr
itgelf. Such an exercige, it may be surmised, might reveal hidden structure within
the optimality conditions which would shed light on the reduced-order case. Indeed,
such en approach led to rhe realizatjon that an oblique projection (idempotent
patrix) is the key to unlocking the unwieldy optimality conditions ([A7,A17]).
Although the result is mathematically straightforward, it is by no means obvious
since in the full-order (LQG) case the projection is rhe jdentity and hence not

readily apparent.

By exploiting the presence of the projection, the necessary condirions can
be transformed into a coupled system of four algebraic matrix equstions consisting of
a pair of modified Riccati equations and a pair of modifjed Lyapunov equations
(Figure 9). The coupling is via the oblique projection r which appears in all four
equations and which is determined by the solutions a and ; of the modified Lyapunov
equations. A eatjsfying feature of the oprimality conditions is that in the full-
order case the projectjon becomes the identity, the modified Lyapunov equations drop
out, and, since 11 = 0, the modified Riccati equations specialize to the usual
separated Riccati equations of LQG theory. Since, furthermore, G = ' = nxn identity,

the standard LQG gain expressions are recovered.

Although the modified Riccati equations specialize to the standsrd Riccari
equations in the full-order case, the modified Lyapunov equations have no counterpart
in the standard theory. The role of these equations can be understood by considering
the problem of optimasl model reduction alone, For this problem the optimal reduced-
order model is characterized by a pair of coupled modified Lyapunov equations
(see [A22]). Thus the modified Lyapunov equarione arising in the reduced-order
dynamjc-compensation problem are directly lnalogoﬁs to the modified Lyapunov
equations arising in model reduction alone. The modified Lyapunov equations ariging
in the control problem, however, are intimetely coupled with the modified Riccatj
equations. Hence it cannot be expected that reduced-order control-design techniquec
based upon LQG will generally yield optimal fixed-order controllers (Figure 10). It

is interesting to note that several such methods discusced in [1) are based upon

balancing which was shown in [A22] to be suboptimal with respect to the quadratic

(least squares) optimality criterion, 1
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REDUCED-ORDER CONTROLLER GAINS

Ac = I'A-0X-XP)GT
B = ractv;’
Cc = -R}'BTPGT

COUPLED RICCATI/LYAPUNOV EQUATIONS

0=AQ ¢ QAT +V, - Qla + 10707,
0=ATP + PA ¢ R, - PP + 1TpXPT,
0 = (A-xP)G + G(A-XP)T + QT0 - r0%01T,
0 = (A-QX)TP + P(A-QT) ¢ PXP - 1TPxPT,
cank & =rmk$=rnnk63=nc

EEYATTE 'GY = 4p,

Figure 9, The Optimsl Reduced-Order Compengator Is Determined by a
Pair of Modified Riccati Bquations and a Pair of Modified Lyspunov Equations
Coupled by the Oblique ProjectionT

HIGH-ORDER
MODEL

MODEL

R
EDUCTION OPTIMAL

PROJECTION
EQUATIONS

CONTROLLER
REDUCTION

OPTIMAL

LOW-ORDER
FEEDBACK
CONTROLLER

SUBOPTIMAL SUBOPTIMAL

Figure 10. The Optimal Projection Equations Provide s Direct Path to

Optimal Reduced-Order Dynamic Compensators
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In susmary, the optimal projecrion equations for reduced-order dynsmic
compengation comprise a direct extension of the basic LQG machinery to the reduced-
order control problem. The design equations, which reduce to the standard LQC result
in the full-order case, provide direct synthesis of optimal reduced-order controllers

in accordance with implementation constraints,

4. Exrensions of LQG to Uncertain Modeling

Two fundamental sources of error in modeling flexible structures are
truncated modes and parameter uncertainties, Since the optimal projection approach
permitg the utilizarjon of the full dynamics model, modal truncation can be largely
avoided. There remains, however, a tendency ro truncate poorly known modes and thus
it is esgential to incorporate a model of parsmeter uncerrainty in both well-known
and poorly known components of the system. Hence the problem formulation of Figure 8
is now generalized in Figure 11 to include uncertain parameters o appearing in the
A, B and C matrices, The parameter o, is assumed to lie within the interval ['51'551
in accordance with jdentification accuracy. Clearly, when uncertainty is absent,

i.e., when Ai. Bi’ Ci4= 0, the reduced-order design problem of Figure 8 is recovered.

HIGH-ORDER, UNCERTAIN PLANT -

s Stochastic disturbance model
s Deterministic parameter uncertainty model

|a|| Sﬁi

X = (A+ZojA)x + (B+Z01B)u + wy
Yy = (C+IoiCpix + wy

LOW-ORDER CONTROLLER
* Dynamic (strictly proper)
» Static (constant gain)
= Dynamic/static (nonstrictly proper)
Figure 11. Robust Optimal Projection Design Is Based Upon a

Hybrid Uncertainty Model Involving a Deterministic Parameter Uncertainty Model
and a8 Stochastic Disrurbance Model
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A salient feature of the design model is that uncertainty is modeled in two
distinctly different ways. External uncertainty appearing as additjve white noige is
modeled stochastically. Such a model sppears appropriate for disturbances such as
coolant flow for which only power spectral data are avsilable. On the other hand,
internal uncertainty appearing as parameter variations is modeled deterministically.
Such a model appears appropriate for uncertainty arising from direcrly measurable
quantities such es mass and stiffness. Thus the overall uncertainty model js hybrid
in the senge that it utilizes both deterministic and stochastic characterizations of

uncertainty.

A natural performance measure which accounts for both types of uncertainty
characterization involves the usual LQG quadratic criterion averaged over the
disturbance statigtics and then maximized over the uncertain parameters (Figure 12).
Hence this performance measur: incorporates on_the average and worgt case aspects in

accordance with physical considerations.

PERFORMANCE CRITERION

J(AcBeCo)=  sup limsup E [xTRyx + 2xTRq2u + uTRou)
o} t—ee

LT -

Worst- Steady- Average Quadratic
Case State

Over Over
Paramelers Disturbance
Statistics

ROBUST PERFORMANCE PROBLEM

Minimize J(A¢,Be.Cc) over the class of robustly
stabilizing controllers (A¢,B¢.Cq)

Figure 12. Performance Is Defined To Be Worst Case Over the Uncertain Parameters %
and Average Over the Digturbance Statigtics

The resulting Robust Performance Problem thus involves determining the
gains (AC.BC.Cc) to minimize the performance J. The static gain Dc can also be
included but will not be discussed here. Despite the apparent complexity of the - d
problesm, remarkably simple techniques can be used. Specifically, first note that

after taking the expected value the performance J hag the form

J(A ,B ,C) = gup lim sup tr Q(t)l.l. (4.1)
e*"e’ e Oy temrm

b




where "tr" denotes trace of a8 matrix, Q{t) is the covariance of the closed-loop
system, and R is an augmented weighting matrix composed of Rl' R12 and R2. The

covariance Q(t) satisfiee the standard Lyapunov differential equation

Q = (A#Eo’iAi)Q + Q(M}:o‘.ni)'r +V, (4.2)
vhere A is the closed-loop dynamics, Ai is composed of Ai' Bi and Ci. and V is the
intengsity of external disturbances for the closed-loop system including the plant and

messurement noise.

Two distinct approaches to this problem will be congidered. The first
involves bounding the performance over the class of parameter uncertainties and then
choosing the gains to minimize the bound. Since bounding precedes control design
this approsch is known as robust design via a priori performance bounds. The second
approach involves exploiting the nondestabilizing nature of structural systems via

weak subsystem interaction.

4.1 Robust Degign Via A Priori Performance Bounds

The key step in bounding the performance (4.1) is to replace (4.2) by &

modified Lyapunov differential equation of the form

é = ;5 + §:r + v(§) + \.r (4.3)
where the bound ¥ satisfies the inequality

Zo;(ii§+§;§) < WQ) (4.4)
over the range of uncertain parameters o, and for all candidate feedback gains. Note

that the inequality (4.4) is defined in the sense of nonnegative-definite marrices.

Now rewrite (4.3) by appropriate addition and subtraction as

2= (ML0a)Q + QAo a0 s M@ - Lo, (A.050A]) + V. (4.5)

Now subtract (4.2) from (4.5) to obtain

9- Q= WToA QA + (@0 (MLaA)T + WQ) - To,(A,aqAD. (4.6)
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Since by (4.4) the term

Q) - Eai(;i§+§;'§) (4.7)
is nonnegative definite, it follows immediately trhat
Q < § (4.8)
over the class of uncertain parameters. Thus the performance (4.1) can be bounded by

. -
J(ALB.C) ¢ J(A_.B ,C) & :i','.." QR. (4.9)

The suxiliary cost J is thus guaranteed to bound the actual cost J. This leads to

the Auxiliary Minimjzation Problem: Minimize the auxiliary cost J over the

controller gains. The advantage of this appraach is that necessary conditjons for
the Auxiliary Minimization Problem effoctively serve ac sufficient conditions for
robust performance in the original problem. Since the bounding step precedes the
optimization procedure, this approach is referred to as robust design via & priori
performance boundse. This procedure is philosophically similar to guaranteed cost
control ([9,10]). Note rhar since bounding precedes optimization, the bound (4.4)

must hold for all gaing since the optimal gains are yet to be determined. —

To obtain sufficient conditions for robust stability, the bounding function
¥ must be specified, Since the ordering of nonnegative-definite marricee appearing
in (4.4) is not a total ordering, a unique lowest bound should not be expected.
Furthermore, each differentiable bound leads to a fundamentsl extension of the
optimal projection equarions and thus of the basic LQG machinery. In work thus fer,
twvo bounds have been extensively investigated. Only one bound, the right
shift/multiplicative white noise bound, will be discussed here. The strucrured

stabiliry radius bound introduced in (11,12] is discussed in [A43].

The right shift/multiplicative white noise bound investigated in [A29,A41] -— ,
is given by

¥ = Ls,(@,g+0 'A,gh). (4.10)

where «, > Q are arbitrary scalars, Note that rhis bound consists of two distinct

parts which must appear in an appropriate ratio. The firgt term aig arisec naturally
o.t
when an exponential time weighting e ' is included in the performance measure. As

is well known ([13]) this leads to a prescribed vniform stability margin for the
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closed-loop system (Figure 13). A uri orm stabiliry margin, no marter how large,
however, does not guarantee robustness with respect to arbitrary parameter

-1

varjations. The complementary second term a, AiQA'g is crucial in this regard.

X=Ax * Xx=(A+alx,a>0

APPLY CONTROL-DESIGN TECHNIQUES
TO RIGHT-SHIFTED OPEN-LOOP SYSTEM
=> UNIFORM STABILITY MARGIN

(Anderson and Moore, 1969)

Figure 13. Open-Loop Right-Shifred Dynamics Arising From Exponential Cost Weighting
Leed to a Unjform Closed-Loop Stability Margin

Although terms of the form ;1§:: are unfamiliar in robust control decign,
they arise naturally in srochastic differentjal equations with multiplicative whire
noise. Thaet ig, if the uncertain parameters o, are repleced by white noise processes
entering multiplicarively rather than additively, then the covariance equetion for Q
automatjcally includes terms of the form ;'16;:‘ The literature on gystems with
multiplicative white noise is quite extensive; see [A38] for references. It ghould
be stressed, however, that for our purposes the multiplicative white noige model is

not interpreted literally as having physical significance. Rather, multiplicarive

white noise can be thought of ns a useful decign model which correcrly captures the
impact of incertainty on the performance functional via the state covariance.
Furthermore, just as the right shift term alone does not guarantee robustness,
neither does the multiplicative white noise term. Both terms must appear
simulraneously. Roughly spesking, since multiplicarive white noise disturbs the
plant though uncertain parameters, the closed-loop system is automatically q

degensitized to actual perameter varjations.
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After incorporating the right shifr/mulriplicarive white noise bound (4.10)
into (4.3) to obtain s bound J for the performance, the optimal projection equations
can be rederived following exactly rthe same parameter optimization procedure
discusgsed in Section 3. Again, the mathematics required is bur a straightforward
applicarion of Lagrange multipliers. The additional bounding rerms are carried
through the derivarion to yield a direct generalizarion of the oprimal projection

equations shown in Figure 14 with gaing given in Figure 15.
- T T 18R T 1T vy
0= A‘Q + QA. +AQAT + V1 + (ABR 25' ‘)Q(,-\-BR 2‘1 ') - Q,st\‘s + r‘Q’VZsQ’r‘

- AT T S N Tl T T,
0= ALP + PA, + ATPU+ Ry ¢ (A-0Vp) TP(A-0gV o) - P gRoers + 1 THIR P r,

. A, A A a7 AT
0= (Ag-BgRoglg)Q + Q(AS-BLR) P T +QgVagQ 5= 10V 240

TT
!r1

- Ve To . p -1 Ta 1, TpTg]
0= (Ag0gVpeCy) P+ PIA-0V 5 Co) * 1 (RogMy™ 7 P 4R P

Figure 14. The Robustified Optimal Projection Design Equations Account for Both
Reduced-Order Dynamic Compensation and Parsmerric Uncertainty

GAINS

A= l‘(A,-B,R';,' 'rt’."'z‘s 6T
Bg = "st.zl
Ce= '“-213" sGT
NOTATION
ap =aTmr, raT= Ing (< 7= GTr =:2)

? P
a0aT= Sa0a], a0n= Xa0B; etc.
=1 =1
T(p+p ayT
Rgy = Ry +BT(PP)B Vog = Vg +c(QeQ)

A A
T T
0 = ocT ¢+ vy; ¢ A(Q+Q)C rg = BIP+RI,*BT(PPN

Figure 15. The OPUS Controller Caing Are Explicitly Characterized as a
Direct Generalization of the Classical LQG Gains
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The robustified oprimal projection equarions comprise a sysfem of four
matrix equarions coupled by both the optimal projection and uncerrainty terms. When
the uncertainty terms are sbgenr, the optimal projection equarionc of Figure 9 are
immediately recovered. On the other hand, if the order of the controller is ser
equel to the order of rhe plant, then all rerms involving T, can be delered._ )
However, in this case the modified Lyapunov equations do not drop our since Q and P
still appear in the modified Riccati equations. Hence rhe basic machinery of LQC is
again extended to include a pair of Lyapunov equations coupled to & generalization of
rhe standard LQC equations. It is interesting to note rthar a related resulr in the
context of multriplicative noise algso appeared in the Sovier lirerature ([14)). It
should alsc be pointed out thar although the modified Lyapunov equations aricing in
the reduced-order control-design problem have analogues in model reducrion, the
modified Lyapunov equatione appearing in rhe full-order robustified equationsc
represent new machinery not anticipared in robustness rheories. Hence using
straight forward mathematical techniques, the basic LQC machinery has again been

extended in novel directions.

Solving the design equarions shown in Figures 14 and 15 yields controllers
with guaranteed levels of robustness. The actual robustness levels may, however, be
larger than specilfied by a priori bounds., Thus, to schieve desired robustification
levels for the uncertainty structure specified by the a priori bounds, the design
procedure may be utilized within an iterative synthesis/analysis procedure '

(Figure 16).

SYNTHESIS

STABILITY AND
~ — = PERFORMANCE
GUARANTEED

CONSTRUCT _ _ _o DESIGN CONTROLLER
BOUNDS TO MINtMIZE BOUNDS

CHECK ACTUAL
STABILITY AND .‘
PERFORMANCE
ROBUSTNESS

ANALYSIS

Figure 16. Optimal Projectjon/Guaranteed Cost Control Provides
Direct Synthesis of Robust Dynamic Compensators

4,2 Robust Degign Via Weak Subsystem Interaction

The mechanism by which LQC was robustified in Section 4.1 involved bounding

the performance over the class of parameter uncertaintijes and then determining

optimal controller gaing for the performance bound. As discussed in Section 2,

. 4444'.*-——




280

however, flexible strucrures possess special properties which may, in addirion, be
exploited to achieve robustnees. Specifically, aside from rigid-body moces, energy
dissipation implies that mechanical structures are open~loop stable regardless of the
level of uncerrainty., Thot js, flexible structures possess only nondestabilizing
uncertainties. lence, in the closed loop, a given controller may or may not render a
particular uncertainty destabilizing. A priori bounds on controller performance
must, however, be valid for all gains since bounding precedes optimization. MHence, a

priori bounding may in certain cases fail ro exploit nondestabilizing uncertainties.

A femiliar example of & nondestabilizing uncertainty involves uncertain
modal frequencies. Such an uncertainty will not, of course, destabilize an
uncontrolled (open-loop) structure. If particuler modsl frequencies are poorly known
then it is clearly advisable to avoid applying high authority control. Hence, rather
than the right-shift approach of Figure 13, it appears advantageous (although, ar
first, counterintuitive) to urilize just the opposire, namely, a left sghift
(Figure 17). Furthermore, in view of the fact rhat uncertajinty usually increaces
vith modal frequency (Figure 18), a variable left shifr appeers to be more
appropriate than a uniform left shifr. By left-ghifring high-frequency poorly known
modes, the control-system design procedure applies correspondingly recduced authority
ro modes "perceived" as highly damped. Hence the variable left shift can be roughly
thought of as & device for achieving suitable authority rolloff, As will be ceen,
however, the underlying robusrificarion mechanism, nemely, weak cubsystem interaction,
is far more subtle than the approach of classical rolloff techniques. It is also
interesring to note rhat the weak subeystem interaction approach to robustness is
entirely distinct from classical robustness approaches which utilize high loop gain

to reduce sensitivity.

LARGE OPEN-LOOP SHIFT
<———— IN HIGH-FREQUENCY REGION
> LOW CLOSED-LOOP AUTHORITY

SMALL OPEN-LOOP SHIFT
< IN LOW-FREQUENCY REGION
> HIGH CLOSED-LOOP AUTHORITY

Re

Figure 17. A Variable Left Shijft Exploits Open-Loop Nondestebilizing Uncertainties
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MODAL FREQUENCY

v

U]

/" N/
COHERENT MODES INCOMERENT MODES
- (Suong Corselation) (Wesk Carsslation)
High-Autharity Centrel Low-Autherity Contrel

Figure 18. Modal Uncertainty Generally Increases With Frequency

A veriable left shift can readily be introduced into the robustified

optimal projection design equations by replacing A by

- 15,2
Ay = A+ 33N, (4.11)

where A’. denotes the structure of modal frequency uncertainty (Figure 19). Most
interestingly, such a modification of the dynamics matrix arises naturally from a
multiplicative white noise model defined not in the usual Ito sense but rather in the

sense of Stratonovith. Thus, as in the a priori bounding approach, s stochastic
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Figure 19. For Modal Systems With Frequency Uncertainty
the Stratonovich Correction Corresponds to a Variable Left Shift




model serves to suggest a mechanism for robustification (Figure 20). Again it is
important to stress that the multiplicative white noise model ic not interpreted
literally as heving physical significance, but rather can be thought of &g a useful
design model which correctly captures the impact of uncertainty on the performance

functional via the state covariance.

ROBUSTNESS BOUNDS

o —— — - —— — ——— ————————— —

/ \
{
\ QUADRATIC LYAPUNOV FUNCTION MAJORANT LYAPUNOV FUNCTION )
\~__.—— — e —— — —— — — —__._'/
I/,—-——— ——— e ———— —— — —_————--u
‘ ITO NOISE MODEL STRATONOVICH NOISE MODEL }
\

s G —— T — — —— — — — — — — ——o— -

STOCHASTIC UNCERTAINTY MODELS

Figure 20. Stochastic Models and Robustness Bounds Are Fundamentally Related

In earlier work the Stratonovich dynamics model wae justified by means of
the minimum information/maximum entropy approach ([A1-A15]). A central resvlt of the
mazimum entropy approach is thar the high authority/low authority transirion of a
vibration control system from well-known low-frequency modes to poorly known high-
frequency modes (Figure 18) is direcrly reflected in the ctructure of the srate

covariance matrix (Figure 21). A full-stare feedback design applied to a simply

— \ —
]
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.-_-..__5_ .......... -
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COHERENT _T INCOHERENT

(WELL-KNOWN MODES) (POORLY KNOWN MODES)
\ e

INFORMATION REGIMES

Figure 21. Frequency Uncertaintiec in the Straronovich Model Lead to
Suppressed Cross Correlation in the Sresdy-State Covariance
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supported beaw illustrates this point (Figure 22). By acsuning that uncerrainty in
modal frequencies increases linearly with frequency, the strucrure of the covariance
matrix leads directly to the control gains illustrated in Figure 23. Notre rhat in
rhe high-frequency region rthe position gains are essentially zero and thus the
control law approaches positive-real energy dissipative rate feedback. This, of
course, is precisely the type of structural controller expected in the presence of
poor modeling information. Of cource, any effecrive control-design theory for acrive
vibration suppression in flexible srructures should produce energy dissipative

controllers when strucrural modeling informarion is highly uncertain.

FORCE
ACTUATOR

* NONOWMENSIONAL EQUATIONS
OF MOTION (3, = o)
+ "ENERGY" STATE.WFIGHTING

* UNCERTAINTIES & OPES-L00P
FRIQUENCHS

°
W= 3 g oy’

1 1 oy = STANDARD DEVIATION
& =243 OF Ksh MODE FREOUENCY
»

o SIPLE UNCERTAINTY MODEL
o SIMPLY.SUPPORTIC BCAM WITH FORCE ACTUATOR oy = owy

o FULL-STATE FEFOBACK

Figure 22. The Effects of Frequency Uncertainties Can Be Illustrated
for a One-Dimengional Beam With Idealized Full~-State Feedback

To carry out robustified optimal projection design in the presence of left-
shifted open~loop dynamics, it is only necessary to utilize the lefr-shifred dynamics
matrix (4.11) in place of the right-shifted matrix. All of the robustified oprimsl
projection machinery, including gain expressions, can be utilized directly., It ije
also important to stress that the left shift must be used in conjunction with terms

of the form Aiq;:.

One explanation for the mechanism by which robustificarion is achieved is
illugtrated in Figure 24, By left shifting the open-loop dynamics within the design
process, the compensator poles are similarly lefr-shifted. Thus the compensator
poles are effecrively moved furrher into the left half plane sway from the actual
plant poles. Since the interacrion between compensator and plant poles is weakened,
the closed-loop cystem is correspondingly robustified with respect to uncertaintjes
in the plant pole locations. A sensitivity analysis of this mechanise utjlizing &

unifors left ghift in the context of LQGC design is given in {15].

L e
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Figure 24. The Stratonovich Variable Left-Shift Model Effectively Places the
Compensator Poles Further Into the Left Half Plane Where
Plant/Compengator Intersction Is Weakened
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As discussed sbove, the left-shift approach exploits open-loop
nondestabilizing uncertainties and thus cennot operate through a priori bounding.
Thus the sctual level of robustification sachieved from the robustified optimal
projection equations for s given level of uncertainty modeling cannot be predicted a
priori, i.e., in advance of control design. Indeed, this situarion is to be expecred
when nondestabilizing uncertainties are exploited in a nonconservetive design theory.
Thus a suitable robust analysis technique is required for nonconservatively
determining the robustificarion of the closed-loop system with respect to open-loop

nondestabilizing uncertainties.

A suitable robustness analysis rechnique, known as majorant Lyapunov
snalysis, has indeed been developed ([A42])). Essentially, this technique employs a
new type of Lyapunov function for assessing robustness due to weak subsystem
interaction. The underlying machinery consists of the block-norm matrix which is a
nonnegative matrix each of whose elements is the norm of & block of & suitably
partitioned marrix (Figure 25). A matrix which bounds the block~norm matrix in the
sense of nonnegative matrices, i.e., element by element, is known ss & majorant.
Majorents were introduced in [16] and were spplied to stability analysis of

jntegratjon slgorithms for ODE's in [17].
(Ostrowski, 1961; Dahlquist, 1983)
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Figure 25. The Matrix Majorant Is s Bound for the Matrix Block Norm,

i.e., the Nonnegative Matrix Each of Whose Elements Is the Norm of the
Corresponding Block of a Given Matrix
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To apply majorants to dynamical systems, the wmodel is written in the form
shown in Figure 26. The matrix A is block diagonal and consiste of subsystem
dynamics. The subsystem interactions represented by the partirioned matrix G are
assumed to be uncertsin. By suijtable manipulation, uncertainties in the diagonal
blocks of A can also be captured by G. By assuming thar the spectral norm (largest
singular value) of the blocks of G satisfy given bounds, the couvarisnce block-nora
jinequality is obtained (Figure 27). This inequality is interpreted in theé sense of
nonnegative matrices, i.e., element~by-element, and * denotes the Hadamsrd (element~

by-element) product,

iz(A+Gew Q:=(A+G)a+QA+G)T+V
- - " -
Ay, 0 ~-- 0 Gy---
A G
A= Ol 2\ Gs= ." 0\
\ AN
i N ] \
t t

b o -

Known Subsystem Dynsmics Uncertain Subsystem interactions

-
F‘H Via--- F°1 Q42 -]
v= |V V2 a=|9% %2
1 N ! N
: N L : N\
L A .
Noiss Inlensity State Covariance

Figure 26. The Large-Scale Systesm Model Involves Known Local Dynamics
and Uncertain Interactions
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Figure 27. The Block-Norm Mstrix of the State Covarjance Satigfies &
Lyapunov-Type Inequality Involving Nonnegative Matrices
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To schieve robustness, the covariance block-norw inequality is replaced by
the majorant Lyspunov equation {Figure 28). The solution of the majorant Lyapunov
equation provides s bound (majorant) for the block norm of the covariance thereby

guaranteeing both robust stability and performance.

MAJORANT LYAPUNOV EQUATION
A*Q=5Q0+Q6T+V
7(Gyj) < Sij

@/\
QR==Q
4

= Robust Stability
s Robust Performance

Figure 28. The Corresponding Nonnegative Matrix Equatjon Yields s Majorsnt
for the State Covariance and Hence Robust Stability and Performance

It is interesting to note that numerical solution of the majorsnt Lyapunov
equstion requires no new techniques. Utilizing properties of M matrices, the
solution can be obtajned monotonically by means of a straightforward jterative
technique (Figure 29).

/N
MLE has a unique solution iff [(x, K=0, 1, ..., =<| where:

N\
C)o 20
/\ aN N\
Qa1 = M2 (5 Qg + QLT + 1)

i & 1 Tap)

converges. Il so, then:
/\ \
QD= 1im Qg
K-«

oA
J-dg <23 (i PG QIKK
K=1

T ~ A
(0=AKPK+PKAK*RK)
Figure 29. By Exploiting the Properties of M-Matrices,
the Msjorant Lyspunov Equation Can Be Solved Monotonicslly by Means of a
Simple Iterative Technique
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An jllustrative spplication of the majorant Lyapunov equation involves
lightly damped subsystems (Figure 30). As shown in [A42) (and expected intuitively),
robustness with respect to uncertsin subsystem interaction is proportional to the
frequency sepsration between the subsystems. The ability to capture this
robustification mechanism is 8 unique feature of the majorant Lyapunov function not
available from quadratic (i.e., scalar) Lyspunov functions or vector Lyapunov
functions ({18,19])).

Majorant Lyapunov Equation Bound ~ v j(‘t’v)2 + (w1 -a.aa‘,)T

Figure 30. Robustness Bounds for Uncertain Coupling in Modal Systems
Are Proportional to the Frequency Separation Between Subsystems

The next step in the majorant development involves & hiersrchy of finer and
finer robustness bounds which sccount for higher order subsystem intersctions, e.g..
the interaction between the ith and jth subsystems via the kth subsystem. The second
member of the hierarchy (Figure 31) provides robustness guarantees with respect to

frequency uncertainties. The interesting aspect of this robustness test is the fact
that the performance bound is characterized precisely by a Stratonovich model. Hence
the Stratonovich model can be viewed as an approximation to a robustness bound, while
exploiting the Stratonovich/majorant relationghip leads to s natural
synthesis/analysis scheme (Figure 32) which nonconservatively exploits open-loop

nondestabilizing uncertainties.
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SYNTHESIS

UTILIZE STRATONOVICH MODEL
TO EXPLOIT NONDESTABILIZING
OPEN-LOOP UNCERTAINTIES

UTILIZE MAJORANT LYAPUNOV
EQUATION TO CHECK ROBUSTNESS WITH
RESPECT TO CLOSED-LOOP NONDESTABILIZING
SUBSYSTEM INTERACTION

ANALYSIS

Stratonovich synthesis = approximation lo majorant analysis

Figure 31. The Stratonovich Synthesis Model Provides a First Approximation to the
Majorant Analysis Bounds

Second member of the hierarchy:

A AN A ~ '
N+Q + 1HIQ) = <>+ <Q>GT + ¥

r /\
J - r[OR] < 22 (ir P L<Q>)kK
K=1

0=AG + OAT + 1{[Q) + V

0=ATP +PA + HI[P]+R
where: A A
<Q> 2 oft-diagonal part of Q
1{[.] = Stratonovich model operator

» Tighter bound—incorporates more information on A and G
« Predicts stability when (A + AT) stable, G = -GT
= “Nominal” performance, tr [QR], given by Stratonovich model

Figure 32. The Refined Majorsant Bound Incorporates a Stratonovich Covarisnce Model

.




5. Numerical Algorithms and Exanmples

Practical design of controllers is only possible when efficient, relisble
algorithas are available. Indeed, the optimal projection equations are readily
solvable and have been applied to a wide variety of examples. Numerical results s
sppear in [A3-A6,A8,A11,A12,A14-A16,A18,A19,A21-A24,A26-A28,A30-A33,A39,A42, A44,A46] .
Two distinctly different algorithme have been developed thus far, namely, an
iterative method and & homotopy algoritim.

The iterstive method, developed in [A14,A16,A44) and further studied in
(20,21], is outlined in Pigure 33. The nice feature of this spproach is that only
a standard LQG software package is required for its implementation. The basic
motjvation for the method is the observation that the main source of coupling is
via the terms involving 7. The coupling is absent, of course, when r is the
identity, i.e., LQG. Note also that the terms involving T, are small when R2 snd
V2 are large, i.e., wvhen control cost is high and the measurement nojse is
significant. This case, which yields low-authority controllers, is approximstely
characterized by decoupled control-design and controller-reduction operstions.
Thus it is not surprising that LQG reduction techniques are most successful vhen

controller authority is low.

Since the 7, terms occasion the greatest difficulty, it appears
advantageous to bring them into play gradually. This cen be accomplished by fixing —
T after each iteration to yield updated values of Q, P, Q sand P. Furthermore, T is

introduced gradually by mesns of a to reduce its rank.

The crucial step of the algorithm concerns the construction of the
projection T from the pseudogramians 6 and ;. Specifically, T can be characterized
(see [A22]) as the sum of eigenprojectjons of a;. where each choice of
eigenprojections may correspond to a local extremal. However, the necessary
conditions do not specify which eigenprojections are to be selected for obtaining a
particulsr local solution. Nevertheless, there do exist useful methods for
constructing 7. For example, component-cost decomposition methods ({22]) when
epplied within the optimal projection framework often permit efficient identification

of the global optimum.

Although the jterative method is convenjent to use because it utilizes
readily available software, it is suboptimal in the gense that jt does novr fully
exploit the structure of the equations. Specifically, vhile the iterative method
addresses a system of four nxn matrix equations, careful analysis reveals that
because of the rank deficiency of the projection the problem can be recast as four

ncxn equations. Hence, when n. is much emaller than n, which is clearly the most
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desirable case for practical implementation, there exists considerable opportunity
for increased computational efficiency. Furthermore, 8nd most satiscfying, the
computational complexity decreases with n. as ig¢ intuitively expected below that

required by LQG design. Hence the oprimal projection approach has computational
complexity less than LQG reduction methods for which LQG is but the first srtep.

S. Richrer ([23,A46]) has developed a howotopy algorithm which fully
exploits this crucial structure. DNumerical experiments thus far have ghown that
considerable computational savings can be achieved over the iterative method.
Furthermore, by applying topological degree theory to investigare the brenches and
character of the local extremals, it can be shown that the maximum number of possible

extremals is

sin(n,m, )
)
[3
if n ¢ min(n,m,4) or 1 otherwise. Hence in most practical cases the equations

support & relatively smsll number of solurions.

Both the iterative method and the homotopy slgorithm have been spplied to a
design problem involving sn 8th-order flexible structure originally due to D. Enns
and consjdered in [1). Specifically, & variety of LQG reduction methods sre compared

in [1) for a range of controller authorities. These methods include:

1. Enns: This method fs & frequency-weighted, balanced realization technique

applicable to either model or controller reduction,

2. Glover: This method utilizes the theory of Hankel norm optimal

spproxisation for controller reduction.

3. Dasvis and Skelton: This is 8 wodification of compensator reduction vis

balancing which addresses the case of unstable controllers.

&, Yousuff and Skelton: This is a further modification of balencing for

hsndling stable or unstable controllers,

5. Liu and Anderson: 1In place of using a balanced spproximation of the
compensator transfer function directly, this method approximates the

component parts of a fractional representation of the compensator.
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All of the above methcds proceed by first obtaining the full-order LQG
compensator design for a high-order state-space model and then reducing the dimension

of the resulting LQG compensator.

Figure 34 summarizes the results reported in [1) for the above LQG
reduction methods along with results obtained using the iterative method for solving
the optimal projection equations. Here q, is & scale factor for the plant
disturbance noise affecting controller authority. Clearly, LQG reduction methods
experijence increasing difficulty as suthority increases, i.e., as the 11 terms become
increasingly more important in coupling the control and reduction operstions. For
the low authority cases, the optimal projection cslculations, which were performed on
a Harris H800 wminicomputer, appeared to incur roughly the same computational burden
as the LQG reduction methods. Although the optimal projection computational burden
increases with authority, cowmparison with the LQG reduction methods is not meaningful
because of the difficulty experienced by these methods in achieving closed-loop
stability. See [A44] for further detaile and for comparisone involving trancient

response.

The homotopy algorithm was also applied to the exsmple considered in [1].
One of the main goals of the development effort was to extend the range of
disturbance intensity or, equivalently, observer bandwidth, out beyond 9, = 2000. To
this end, second-order (nc = 2) controllers were obtained with relatively little
computation for q2 = 10,000, 100,000 and 1,000,000. In addition, the performance of
each reduced-order controller was within 25% of LQG. These cases can surely be
expected to present a nontrivial challenge to both the LQG reduction methods and the

iterative optimal projection method.

Numerical solution of the robustified optimal projection equations hass been
carried out for several examples. For illustrative purposes a 2x2 example was
consijdered in [A26] and the results jllustrated in Figure 35 indicate performance/
robustness tradeoffs possible. The variesble left-shift technique was applied ir
[A19] to the NASA SCOLE problem with frequency uncertainties. The robustness of LQG
and two robustified designs i6 hown in Figure 36. The plots illustrate the
degradation in performance due to simultaneous perturbation of all modal frequencies.
Note that LQG is rendered unstable by +5% frequency perturbation while a high-
authority robustified design improves this region to +8%. The low-authority design

incresses this region significantly while sacrificing 61 nominal performance.
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6. Additijonal Extensions

The robustified optimal projection design machinery has been further
extended to encompass s larger number of design cases arising in practical

spplication. Here we merely list the extencions:
1. Digcrete-time and sampled-data controllers ([A28,A30,A34,A35]).
2. Decentralized controllers ([A39]).
3. Nonstrictly proper controllers ([A37]).

4, Distributed parameter systems ([A25]).

7. Concluding Remarks

The machinery provided by OPUS for designing active controllers for
flexible structures has been reviewed. The basic machinery is 8 system of coupled
Riccati and Lyapunov equationg which directly generalize the classical LQG result to
include both a constraint on controller order and a model of paramerer uncerrainty.
The overall approach thus encompasses all major design tradeoffs arising in
vibration-guppression applications. Substantial numerical experience has been gained
through an iterative wmethod requiring only an LQG software package and, more
recently, by means of a highly efficient homotopy algorithm developed by S. Richter.
The overall approach opens the docr for effective design of implementable controllers

for large precision space structures.

Acknowledgment. We wich to thank Ms. Jill M. Straehla for the excellent

preparation of this paper.




- e

General References

1.

2.

10.

il.

12.

13.

14,

15.

16.

17.

Y. Liu and B. D, O. Anderson, “Controller Reduction Via Stable Factorization
and Balancing,™ Int. J. Contr., Vol. 44, pp. 507-531, 1986,

G. Zames, “"Feedback and Optimsl Sensitivity: Model Reference Transformations,
Multiplicative Seminorms, and Approximate Inverses," IEEE Trans. Autoam.
Contr., Vol. AC-26, pp. 301-320, 1981.

J. C. Doyle, "Guarsnteed Hargins for LQG Regulators.,” IEEE Trans. Autom.
Conrr., Vol. AC-23, pp. 756-757, 1978.

J. C. Doyle and G. Stein, "Multivariable Feedback Design: Concepts for a
Classical/Modern Synthesis,” IEEE Trans. Autom. Contr., Vol. AC-26, pp. 4-16,
1981,

G. Stein and M, Atblﬁl. *The LQG/LTR Procedure for Multivariable Feedback
Control Design,® IEEE Trans. Autom. Contr., Vol. AC-32, pp. 105-114, 1987,

E. Soroka and U, Shaked, "On the Robustness of LQ Regulators,™ IEEE Trans.
Autom. Contr., Vol. AC-29, pp. 664-665, 1984,

U. Shaked and E, Sorcka, "On the Séability Robustness of the Continuous-Time
LQG Optimal Control,” IEEE Trane. Autom. Contr., Vol. AC-30. 1039-1043.

J. C, Doyle, "Anslysis of Feedback Systems with Structured Uncertainties,” IEE
Proc., Vol. 129, pp. 242-250, 1982.

S. S. L. Chang and T, K, C. Peng, "Adaptive Guaranteed Cost Control of Systems
with Uncertsain Parameters,” IEEE Trans. Autom., Contyr., Vol. AC-17,
PP. 474-483, 1972,

A. Vinkler and L. J. Wood, "Multistep Guaranteed Cost Control of Linear
Systems vith Uncertain Parameters,” J. Guid, Contr., Vol. 2, pp. 449-456,
1979.

I. R. Petersen and C. V. Hollot, "A Riccati Equation Approach to the
Stabilization of Uncertain Systems," Automatica, Vol. 22, pp. 433-448, 1986.

D. Hinrichsen and A. J. Pritchard, “Stability Radiue for Structured
Perturbstions and the Algebraic Riccati Equation,”™ Sys. Contr. Lett., Vol. 8.
pp. 105-113, 1986.

B. D. O. Anderson end J. B. Moore, Linear Optimal Control, Prentice-Hall,
Englewood Cliffs, NJ, 1970,

G. N. Milstein, "Degign of Stabilizing Controller with Incomplete State Datas
for Linear Stochastic System with Multiplicative Noise," Autom. Remote Contr.,
Vol. 43, pp. 653-659, 1982,

G. A. Adamisn and J. S. Gibson, "Sensitivity of Closed-Loop Eigenvalues and
Robustness,” preprint.

A. M. Ostrowski, "On Some Metrical Properties of Operator Matrices and
Matrices Partitioned into Blocks,™ J. Math. Anal. Appl., Vol. 2, pp. 161-209,
1961.

G. Dahlquist, ™On Matrix Majorents and Minorants, with Applications to
Differential Equations,™ Lin. Alg. Appl.., Vol. 52/53, pp. 199-216, 19863.




18.

19.

20.

21.

22.

D. D. Siljak, Large-Scale Dynamic Systems, Elsevier/North-Holland, 1978.

M. Ikeda and D. D. Siljek, "Generalized Decompositions of Dynamic Systems and
Vector Lyspunov Functions,™ IEEE Trans. Autcm. Contr., Vol. AC-26,
pp. 1118-1125, 1961.

A. Gruzen, "Robust Reduced Order Control of Flexible Structures,”™ C. S. Draper
Laboratory Report BCSDL-T-909, April 1986,

A. Gruzen and W. E. Vander Velde, "Robust Reduced-Order Control of Flexible
Structures Using the Optimal Projection/Maximum Entropy Design Methodology,®
AIAA Guid. Nav., Contr. Conf., Williamsburg, VA, August 1986.

A. Yousuff and R. E. Skelton, "Controller Reduction by Component Cost
Analysis,” IEEE Trans. Autom. Contr., Vol. AC-24, pp. 520-530, 1984,

S. Richter and R. DeCarlo, ™Continuation Methods: Theory and Applications,”
IEEE Trans, Autom. Contr., Vol. 28, pp. 660-665, 1983.

OPUS References

Al.

A2.

A4,

A6.

A7,

A8.

A9,

D. C. Hyland, "The Model Coordinate/Radiative Transfer Formulation of
Structural Dynamice--Implications for Vibration Suppression in Large Space
Plat forus,” MIT Lincoln Laboratory, TR-27, 14 March 1979.

D, C. Hyland, "Optimal Regulation of Structural Systems With Uncertain
Parameters,” MIT Lincoln Laboratory, TR-551, 2 February 1981,
DDC# AD-A099111/7.

D. C. Hyland, "Active Control of Large Flexible Spacecraft: A New Design
Approsch Bagsed on Minimum Information Modelling of Parameter Uncertainties,”
Proc, Third VPI&SU/AIAA Symposium, pp. 631-646, Blacksburg, VA, June 1981.

D. C. Hyland, "Optimal Regulator Design Using Minimum Information Modelling of
Parameter Uncertainties: Ramifications of the New Design Approach,™ Proc.
Third VPI&SU/AIAA Symposium, pp. 701-716, Blacksburg, VA, June 1981,

D. C. Hyland and A, N. Madiwale, "Minimum Information Approach to Regulator
Design: Numerical Methods and Illustrative Results,®™ Proc. Third VPI&SU/AIAA
Symposium, pp. 101-118, Blacksburg, VA, June 1981.

D. C. Hyland and A. N. Madiwale, ™A Stochastic Design Approach for Full-Order
Compensation of Structural Systems with Uncertain Parameters,”™ Proc. AIAA
Guid. Contr. Conf,, pp. 324-332, Albuquerque, NM, August 1981.

D. C. Hyland, "Optimality Conditjons for Fixed-Order Dynamic Compensation of
Flexible Spacecraft with Uncertain Paremeters,™ AIAA 20th Aerospace Sciences
Meeting, paper 82-0312, Orlando, FL, January 1982.

D. C. Hyland, "Structural Modeling and Control Design Under Incomplete
Parameter Information: The Maximum Entropy Approach,”™ AFOSR/NASA Workshop in
Modeling, Analysis and Optimization Isgues for Large Space Structures,
Williamsburg, VA, May 1982.

D. C. Hyland, "Minimum Information Stochastic Modelling of Linear Systems with
a Class of Parameter Uncerrainties,” Proc, Awer. Contr. Conf., pp. 620-627,
Arlington, VA, June 1982.




A10.

All,

A2,

Al3,

Al4,

AlS.

Al6.

Al7.

Al8.

Al19.

A20.

A21.

A22.

A23,

D. C. Hyland, "Maximum Entropy Stochastic Approach to Control Design for
Uncertain Structural Systems,™ Proc., Awer. Contr. Conf., pp. 680-688,
Arlington, VA, June 1982.

D. C. Hyland, "Minimum Information Modeling of Structural Systems with
Uncerctain Parameters,"™ Proceedings of the Workshop on Applications of
Distributed System Theory to the Control of Large Space Structures,

G. Rodriguez, ed., pp. 71-88, JPL, Pasadena, CA, July 1982.

D. C. Hyland and A. N. Madiwale, "Fixed-Order Dynamic Compensation Through
Optimal Projection,” Proceedings of the Workshop on Applications of

Distributed System Theory to the Control of Large Space Structures,
G. Rodriguez, ed., pp. 409-427, JPL, Pasadena, CA, July 1982,

D. C, Hyland, "Mean-Square Optimal Fixed-Order Compensstion--Beyond Spillover
Suppression,”™ paper 1403, AIAA Astrodynamics Conference, San Diego, CA, August
1982,

D. C. Hyland, "The Optimal Projection Approach to Fixed-Order Compensation:
Nuperical Methods and Illustrative Results,”™ AIAA 21st Aerospece Sciences
Meeting, paper 83-0303, Reno, NV, January 1983.

D. C. Hyland, “Mean-Square Optimal, Full-Order Compensation of Structural
Systems with Uncertain Parameters,™ MIT Lincoln Laboratory, TR-626, 1 June
1983,

D. C. Hyland, "Comparison of Various Controller-Reduction Methods: Suboptimal
Versus Optimal Projection,” Proc. AIAA Dynamics Specislists Conf.,
pPp- 381-389, Palwm Springs, CA, May 1984.

D. C, Hyland and D. S, Bernstein, “The Optimal Projection Equations for Fixed-
Order Dynamic Compensation,” IEEE Trans. Autom. Contr., Vol. AC-29,
pp. 1034-1037, 1984,

D. C. Hyland, "Application of the Maximum Entropy/Optimal Projection Control
Design Approsch for Large Space Structures,” Proc. Large Space Antenna Systems
Technology Conference, pp. 617-654, NASA Langley, December 1984.

L. D, Davis, D, C. Hyland and D. S. Bernstein, "Application of the Maximum
Entropy Design Approach to the Spacecraft Control Laboratory Experiment
(SCOLE)," Final Report, MASA Langley, January 1965.

D. S. Bernsctein and D, C. Hyland, “"The Optimal Projection Equations for
Reduced~Order State Estimation,™ IEEE Trans. Autom, Contr., Vol., AC-30,
vp. 583-585, 1985.

D. S. Berngtein and D. C. Hyland, "Optimal Projection/Maximum Entropy
Stochastic Modelling and Reduced-Order Design Synthesis,™ Proc. IFAC Workshop
on Model Error Concepte and Conpensation, Eoston, MA, June 1985, pp. 47-54, R.
E. Skelton and D, H. Owens, eds., Pergamon Prese, Oxford, 1986.

D. C, Hyland and D. S. Bernstein, “The Optimal Projection Equations for Model
Reduction and the Relstionships Among the Methods of Wilson, Skelton and
Moore," IEEE Trans. Autom. Contr., Vol. AC-30, pp. 1201-1211, 1985.

D. S. Bernstein and D, C. Hyland, “The Optimal Projection/Maximum Entropy
Approach to Designing Low-Order, Robust Controllers for Flexible Structures,®
Proc. 24th IEEE Conf. Dec. Contr., pp. 745-752, Fort Lsuderdale, FL, Deceuber
1985,




A24,

A25.

A26,

A27.

A29.

A33,

A3S5,

A37.

30

D. S. Bernstein, L. D, Davis, S. W, Greeley and D. C. Hyland, "Numerical
Solution of the Optimal Projection/Maximum Entropy Design Equations for Low-
Order, Robuet Controller Design," Proc. 24th IEEE Conf. Dec. Contr.,,

pp. 1795-1798, Fort Lauderdale, FL, December 1985.

D. S. Bernstein and D. C. Hyland, "The Optimal Projection Equaiions for
Finite-Dixensional Fixed-Order Dynamic Compensstion of Infinite-Dimensional
Systems,” SIAM J. Contr. Optim,, Vol. 24, pp. 122-151, 1986.

D. S. Bernstein and S. W. Greeley, "Robust Controller Synthesis Using the
Maximum Entropy Design Equations,” IEEE Trans. Autom. Contr., Vol. AC-31,
pp. 362-364, 1986,

D. C. Hyland, D. S. Bernstein, L, D. Davis, S. W. Greeley and S, Richter,
“MEOP: Maximum Entropy/Optimal Projection Stochastic Modelling and Reduced-
Order Design Synthesis,” Final Report, Air Force Office of Scientific
Research, Bolling AFB, Washington, DC, April 1986.

D. S. Bernstein, L. D, Davis and D. C. Hyland, "The Optimal Projection
Equations for Reduced-Order, Discrete-Time llodelling, Estimation and Control,”
J. Guid. Contr, Dyn., Vol. 9, pp. 288-293, 1986.

D. S, Bernstein and S, W. Greeley, "Robust Output-Feedback Stabilizatfon:
Deterministic and Stochastic Perspectives," Proc, Amer. Contr. Conf.,
pp. 1818-1826, Seattle, WA, June 1986.

D. S. Bernstein, L. D. Davis and S. W, Greeley, "The Optimal Projection
Equations for Fixed-Order, Saupled-Data Dynamic Compensation with Computation
Delay,” IEEE Trans. Autom., Contr., Vol. AC-31, pp. B59-862, 1986.

D. S. Bernstein, "OPUS: Optimal Projection for Uncertain Systems,™ Annual
Report, Air Force Office of Scientific Research, Bolling AFB, Washington, DC,
October 1986,

B. J. Boan and D. C. Hyland, “The Role of Metal Matrix Composites for
Vibration Suppression in Large Space Structures," Proc, MMC Spacecraft
Survivability Tech. Conf., MMCIAC Kaman Tempo Publ., Stanford Research
Institute, Palo Alto, CA, October 1986.

D. C. Hyland, "An Experimental Testbed for Validation of Control Methodologies
in Large Space Optical Structures," SPIE Optoelectronics and Lager
Applications Conference, Los Angeles, CA, January 1967,

W. M. Hadded and D. S. Bernstein, "The Optimal Projection Equations for
Discrete-Time Reduced-Order State Estimation for Linear Systems with
Multiplicative White Noise," Sys. Contr. Lett., 1987,

D. S. Bernstein and W. M. Hadded, "The Optimal Projection Equations for
Discrete-Time Fixed-Order Dynamic Compensation of Linear Systems with
Multiplicative White Noise,"™ Int. J. Contr., 19¢7.

W. M. Haddad and D. S. Bernstein, "The Optimel Projection Equatrions for
Reduced-Order State Estimation: The Singular Messurement Noise Case," IEEE
Trans. Autom. Contr., 1987.

D. S. Bernstein, "The Oprimal Projection Equatione for Static and Dynamic
Output Feedback: The Singular Case,” IEEE Trans. Autom. Contr., 1987.




A38.

A39.

A40,

Adl,

A2,

A43,

Ab4,

A4S .

A46.

D. S. Bernstein and D, C. Hyland, "The Optimal Projection Equations for
Reduced-Order Modelling, Estimation and Control of Linear Systems with
Multiplicative White Noise,* J. Optim. Thy, Appl., 1987,

D. S. Bernstein, "Sequential Design of Decentralized Dynamic Compensators
Using the Optimal Projection Equations,™ Int. J. Contr., 19€7. -

D. S. Bernstein and W, M. Haddad, "Oprimal Outputr Feedback for Nonzero Set
Point Regulation,” Proc. Amer. Contr, Conf., Minneapolis, MN, June 1987.

D. S. Bernstein, "Robust Sratic snd Dynamic Output-Feedback Stabilization:
Deterministic and Stochastic Perspectives,” IEEE Trans. Autom. Contr., 1987.

D. C. Hyland and D. S, Bernstein, "The Majorant Lyspunov Equarion:
A Nonnegatijve Matrix Equation for Guaranteed Robust Stability and Performance
of Large Scale Systems,* IEEE Trans. Autom. Contr., 1987.

D. S. Bernstein and W, M. Haddad, "The Optimal Projection Equations with
Petersen-Hollot Bounde: Robust Controller Synthegis with Guaranteed
Structured Stability Radius," submitted.

S. W. Greeley and D. C. Hyland, "Reduced-Order Compensation: LQG Reduction
Versus Optimal Projection,®™ submitted.

W. M. Haddad, Robust Optimal Projection Control-System Synthesis,
Ph.D. Dissertation, Depsrtment of Mechanical Engineering, Florida Institute of
Technology, Melbourne, FL, March 1987.

S. Richter, "A Homotopy Algorithm for Solving the Optimal Projecrion Equations
for Fixed-Order Dynamic Compensstion: Existence, Convergence and Global
Optimality,™ Proc. Amer. Contr. Conf., Minneapolis, MN, June 1987,

18




g em e s o - o - -

APPENDIX B

The Majorant Lyapunov Equation: A Nonnegative
Matrix Equation for Robust Stability and
Performance of Large Scale Systems

K

—




W W

{EEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL AC-32, NO. i1. NOVEMBER 198~

1005

The Majorant Lyapunov Equation: A Nonnegative
Matrix Equation for Robust Stability and
Performance of Large Scale Systems

DAVID C. HYLAND anp DENNIS S. BERNSTEIN, MEMBER, [EEE

Abstract—A new robust stability and performance analysis technique
is developed. The approach involves replacing the state covariance by its
block-sorm matrix, i.e., the nonaegative matrix whose elemeunts are the
norms of subblocks of the covariance matrix partitioned according to
subsystem dynamics. A bound (i.e., majorant) for the block-norm matrix
is given by the majorant Lyapunov equation, a3 Lyapunov-type nonnega-
tive matrix equation. Existence, uniqueness, and computational tractabil-
ity of solutions to the majorant Lyapunov equation are shown to be
completely characterized in terms of M matrices. Two examples are
considered. For s damped simple harmonic oscillator with uncertain but
constant natural frequency, the majorant Lyapunov equation predicts
unconditional stability. And, for a pair of nominally uncoupled oscilla-
tors with uncertain coupling, the majorant Lyapunov equation shows that
the range of nondestabilizing couplings is proportional to the frequency
separation between the oscillators, a result not predictable from quadratic
or vector Lyspunov functions.

I. INTRODUCTION

THE imponrtance of robustness in control-system analysis and
design cannot be overemphasized. The past ten years’
literature reflects considerable frequency-domain development
{1]-{11]. while recent publications indicate increasing time-
domain activity [12]-{19]). Wide variations in underlying assump-
tions. mathematical settings, and problem data render it difficuit.
if not impossible. to clearly delineate the relative effectiveness of
different methods. Our own philosophical outlook has thus been
guided by two general criteria:

1) effectiveness for simple examples:
2) efficiency when applied to large scale problems.

The first criterion involves applying robustness techniques to
simple. perhaps trivially obvious, examples to serve as ‘‘acid
tests.”” A given method's effectiveness on a collection of such
examples can possibly reveal inherent shortcomings. As an
illustration of this criterion. consider a damped harmonic oscilla-
tor with constant but uncertain natural frequency. Using the
notation of [6]. stability is guaranteed so long as

w20

(1.1)

Imn [RUNM + GU)K(Ju))'GUwIL ")l <1,

where, for v > 0,

G(s)=(s1+2rs+w?)"!
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and uncertainty in the nominal natural frequency w, is modeled by
A(s)=L ' (s¥(s)R(s)=bwl,

Ls)=1/a, 8(s)=b6/a, R(s)=w?, K(5)=0,

6 € [-min (], a), a]. a>0.

Note that

omn[0(Jw)] =1, w20

as required in [6). The perturbation A(s) (modeled as a feedback
gain) effectively replaces w? in G(s) by (1 + 8)w?. Hence. for a
given o > O this uncertainty model permits perturbed natural
frequencies in the range (0. (1 + a)! *w,]. Evaluating (1.1) yields
the upper bound

a<[(wz-w2):+4v:w3]”/wi, w20 (1.2)

or. equivalently,

a<2il-tY)'? (1.3)
where { = v/w,. The conservatism of (1.3) is obviously most
pronounced when the damping ratio { is small. In all cases.
however. the conservatism is infinite.

The second criterion is obviously subjective and depends upon a
variety of factors such as problem structure. designer experience.
and computational resources. This criterion is, in our opinion,
most important since the need for robustness techniques becomes
increasingly critical as system complexity grows. Indeed, the
ultimate test of a given approach is to scale it up to larger and
larger problems to reveal inherent limitations. Obviously. such
tests are not only difficult, but may entail a significant commit-
ment of human and financial resources. Nevertheless, crude
predictions are sometimes available. and a case in point is the
“*curse of dimensionality’® encountered in the approach of [9].
Another example involves computational difficulties in obtaining
bounds for the u-function with more than three blocks [10].

The contribution of the present paper is a new robustness
analysis method developed specifically for large scale systems.
The basic idea, motivated by the work of Siljak [30] on connective
stability, is as follows. The system is assumed to be in the form of
a collection of subsystems with uncertain local dynamics and
uncertain interactions.' Parameter uncertainties are modeled as
either structured or unstructured constant variations contained in
prescribed sets. The state covariance, partitioned conformably
with the subsystem dynamics, is replaced by its block-norm
matrix, i.e., the nonnegative matrix each of whose elements is the
norm of the corresronding subblock of the original matrix. This
nonnegative matrix satisfies a novel inequality designated the

' Uncertainties in a single subsysiem can also be regarded as interaction
uncertainties. To see this, write X = (4 + G)x twice so that the uncertainmy
G is represented by (9 O] .

0018-9286/87/1100-1005801.00 ¢ 1987 IEEE
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covariance block-norm inequality. The existence of a solution
10 the majorani Lyapunov equation. i.c., the covariance block-
norm inequality interpreted as an equation, yields an element-by-
clement bound (i.c., majorant) for the covariance block-norm,
hence, assuring robust stability and performance. The relevance
of this technique to large scale systems stems from the fact that
replacing each subblock of the covariance by its norm can
significantly reduce the dimension of the problem. Indeed, the
dimension of the majorant Lyapunov equation is equal to the
number of subsystems which may be significantly less than the
dimension of the original system.

To illustrate the above ideas in more detail, consider the
covariance equation

0=(A+G)Q+Q(A+G)T+V (1.4)

where A denotes the nominal dynamics, G denotes uncertainty in
A, Vis the disturbance intensity, and Q is the state covariance.
Assuming that A is block diagonal with r diagonal blocks leads to
the covariance block-norm inequality (see Proposition 4.2)

@+ QssGQ+QGT+V. (1.5)

In (1.5). @, Q. G. and 'V are r X r nonnegative matrices, i.c.,
each element is a nonnegative number. The matrices Q and 'V are
formed by taking the Frobenius norm of each subblock of Q and
V, while each component of G is a given constant which bounds
the spectral norm (largest singular value) of the corresponding
subblock of the uncertain perturbation G. Hence, § is a majorant
for G in the sense of [21]-[23). Each element of the matrix @ is
bounded above by the smallest singular value of the Kronecker
sum [24]-{26] of pairs of diagonal blocks of A. The operation
“*«'" is the Hadamard product [27), [28], and the ordering
** < < denotes element-by-element comparison, i.e., the order-
ing induced by the cone of nonnegative matrices [29], [30].

The majorant Lyapunov equation is obtained by replacing the
inequality (1.5) by the 7 X r nonnegative matrix equation

Q«q=68+4g7+%. (1.6)
A key result (Corollary 5.1) states that
Qs <§ (!

for all stable A + G. Consequently (see Theorem 5.1), the
existence of a unique solution to (1.6) leads directly to a guarantee
of robust stability over the range specified by § and to a
performance bound involving &. Moreover, solutions of (1.6)
exist if and only if the r¥ x r? matrix

A = diag (vec @)-GC @ G (1.8)

s an M matrix [29], [30).

Even when the number of subsystems is large, the majorant
Lyapunov equation is generally comPutationally tractable. Specif-
ically, although A is an 7? X r° matrix, no compuiations
whatsoever need to be carried out with matrices of this
dimension. Rather, it suffices to solve only the majorant
Lyapunov equation (1.6). In this regard we show that § is given
by

&=1lim &, (1.9)
where if G has only off-diagonal nonzero blocks the sequence
{@,} is generated by

G.Q10|=9QI+Q197+V' QO=°

and is monotonically increasing. Furthermore, the convergence of
this sequence is equivalent to A being an M matrix so that it is not
even necessary to form Q. Note that (1.6) does not require the
development of new solution techniques. Indeed, since (1.10) is a

(1.10)

straightforward iteration. (1.6) is even easier 10 solve than the
original Lyapunov equation (1.4).

To illustrate these results we consider two examples. The first
example is the damped oscillator already considered in this
section. With litle effort the majorant Lyapunov equation yields
the (obvious) result that the oscillator is stable for all constant
natural frequencies. The second example involves a pair of
oscillators with known parameters but with uncertain coupling.
The majorant Lyapunov equation yields bounds over which
stability is guaranteed, and these bounds are compared to the
actual stability region as a function of frequency separation. The
main result shows that the robustness to uncertain coupling is
proportional to the frequency separation. This weak subsystem
interaction robustification mechanism is the principal contribution
of the majorant theory. This example has immediate application to
the problem of vibration control in flexible structures. For this
class of problems the open-loop dynamics can be viewed as a
collection of uncoupled oscillators which become coupled via
feedback and structural uncertainties.

The majorant bound developed in the present paper is quite
different from the widely used quadratic Lyapunov function (see,
e.g., {12]-[20]). As can readily be shown using the methods of
[12]. {17]-[20], the quadratic Lyapunov function yields robust
stability and performance by replacing (1.4) by

0=A0+Q0AT+U0)+V

where () satisfies

(1.1

GO+ 0GTsQ0)

for all variations G. It can then be shown that

0sQ

where now, in contrast to (1.7). the ordering in (1.13) is defined
with respect to the cone of nonnegative-definite matrices.
Indeed, the majorant bound may be more closely related to vector
Lyapunov functions [30]. {31] and the Lyapunov matrix function
[32]., [33]. It does not appear possible, however, to use these
techniques to obtain the majorant results on robustress due to
subsystem frequency separation.

The reader will observe that this paper exploits 2 wide variety
of techniques including nonnegative matrices, block norms,
matrix majorants, the Hadamard product, the Kronecker sum. and
M matrices. Each of these techniques, except majorants, has,
however, been previously applied to control problems in numer-
ous instances. In the special case of scalar subblocks, the block-
norm matrix has, moreover. been utilized by Yedavalli {13]-{15}
and others for robustness analysis and design. In this case the
block norm is known as the matrix modulus. The variety of
algebraic structures employed in the present paper should not be
surprising since the quest for increasingly refined robustness
techniques can be expected to invoke correspondingly refined
uncertainty bounds. Related techniques are employed in [11].
Furthermore, nonnegative matrix equations involving M matrices
arise naturally in a variety of settings (see, ¢.g.. [38], (39]).

The contents of the paper are as follows. Section Il presents
notation, definitions, and lemmas for use throughout the paper. In
Section 111 robust stability and performance are defined for the
homogeneous and nonhomogencous systems. Detailed system
structure and uncertainty characterization are given in Section IV
and the covariance block-norm inequality is derived. Section V
analyzes the majorant Lyapunov equation to obtain a majorant for
the steady-state covariance. The main result, Theorem 5.1,
guarantees robust stability and provides a performance bound.
Finally, the examples appear in Section V1.

(1.12)

(1.13)

I1. PRELIMINARIES

The foliowing notation will be used throughout. All matrices
are assumed to have real entries.

| pna

AR

;i .
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i -
n, BP9, j1e

Ip. 0prq. 0,
e,8

»

col, (Z)
vec (2)

Zip

ZT

z—‘r

trZ

diag (Z,, -, Z,)

block-diag (Z;, -, Z,)

o(Z)

asymptotically stable
matrix

nonnegative-definite
matrix

positive-definite
matrix

Z, =z 2,

Z, > 2,

nonnegative matrix

positive matrix

Z| =22 Z:

Z, » Z

ZHI

block-norm matrix

majorant

Imin(Z), Oma(Z)
Amar(Z)
i ZHs

WZ}r

expected value

real numbers, px g real matrices,
Hpx!

p X p identity matrix, px g zero ma-
trix, 0,

Kronecker sum, Kronecker product
(24]-127)

Hadamard product [27], {28)

ith column of matrix Z

C0l| (Z)
: € B™, Z € RPe
colg (Z)

(i, j) element of matrix Z

transpose of vector or matrix Z
(ZT)—I or (Z-I)T

trace of matrix Z

diagonal matrix with listed diagonal
clements

block-diagonal matrix with listed diag-
onal blocks

spectral radius of Z

matrix with eigenvalues in open left-
half plane

symmetric matrix with nonnegative ei-
genvalues (Z = 0)

symmetric matrix with positive eigen-
values (Z > 0)

Z, - 2,20, Z,, Z, symmetric

Z, - 2Z,>0, 2,, Z, symmetric
matrix with nonnegative elements

(Z 2 = 0) (29). (30)

matrix with positive elements (Z » 0)
Z - 2,220

Z] - Zz » 0

Hadamard inverse. (Z%'), ;&
[Z,,)",Z» 0

nonnegative matrix each of whose ele-
ments is the norm of a corresponding
subblock of a given partitioned matrix
nonnegative matrix each of whose ele-
ments bounds the corresponding ele-
ment of a block-norm matrix
Euclidean norm of vector Z

singular value of matrix Z

smallest and largest singular values of
matrix Z

largest eigenvalue of symmetric matrix

dnn(Z) (spectral norm induced by
”'”:)

(“ZZT)IZ=[,§ zZ: ]I'Z
W)

INEX

(Frobenius norm [34]).

In subsequent sections we shall exploit the fact that the norms
B-1lz. |- llss and |- || coincide for vectors. Hence, if Z € R°,
then by interpreting ®” = J°*! it follows that

KZl2=1Z]s=1ZF. @.n

Furthermore, if Z € §17*9, then

KZIssHZlr=lvec Zllp=llvec Z|l2=lvec ZY,. (2.2)

Lemma 2.1: 12 € ;r*dand Z € 5197 then

Omn D2, 1221 s< i Z),11 2)iF. (2.3, 2.9)

If. furthermore. p = ¢ = r Z 2 0, and Z is symmetric, then
tr 2Z2s(r 2 (2)sar 2)| 2),. Q.5)

Proof: Inequality (2.4) can be found in [35, p. 263]. To
prove (2.3). note that when Z is singular the result is immediate.
Otherwise, if p = g replace Z and Z in (2.4) by Z~' and 22,
respectively. The result now follows from [gmu(Z)]"' =
mn(Z7'). If p # q, then related arguments apply. Finally, (2.5)
is given in [36). 0O

Recall {30] that a matrix § € 27"’ is an N matrix if S, s 0,
i,j=1,--+,r i j If inaddition, all principal minors of S are
positive, then § is an M matrix.

Lemma 2.2: Suppose S € }’*' is an N matrix. Then the
following are equivalent:

1) S is an M matrix;

iiydet S # Oand S~!' 2= 0;

iii) foreach y € J1’, y 2 2 0, there exists a unique x € R, x
2 = 0. such that Sx = y;

iv) there exists x € R, x 2 = 0. such that Sx » 0;

v) ], « S » 0 and each diagonal matrix D » I, » S satisfies
o[D-'U,*S - S)] < 1.

Proof: The equivalence of statements i). ii), iv), and v)
follows from [30, p. 396]. The implication ii) = iii) is immediate,
and iii) = iv) follows by setting y = [1 1 --- }7. -

Lemma 2.3: Suppose S € ">’ is an M matrix and let § €
R’*" be an N matrix such that § 2 = S. Then § is an M matrix.

Proof: See {30, p. 400). =

HI. RoBUST STABILITY AND PERFORMANCE BOUNDS

Consider the nth-order homogeneous system*

x(1)=(A©0)+G)x(r), 1€ [0, o), 3.1
GE®CR", (3.2)
6€06CHh, (3.3)

where A:@ — R"*"is continuous, 4 = A (f) denotes the known
nominal dynamics for 6 € ©. 6 denotes the unstructured
parametric uncertainty in A. G denotes the structured parametric
uncertainty in 4. and 0 € @ is the nominal value of G. We first
consider the stability of (3.1) over & and O.

Definition 3.1: If A(6) + G is asymptotically stable for all G
€ @and 6 € O, then the homogeneous system (3.1) is robustly
stable over 8 and ©.

Now consider the nth-order nonhomogeneous system

xX(1)=(A0)+ G)x(1)+ w(1), ! € [0, o) 3.4)
where G € 8,60 € O, and w(-) is white noise with intensity V =
0. For given G € & and # € O, the steady-state average
quadratic performance is defined by

J(G, 6) £ lim sup E(xT(r)Rx(r)] (3.5)

1=

where R = RT 2 0. The system (3.4) may, for example, denote
a control system in closed-loop configuration. There is no need in
our development, however, to make such distinctions
In practice, steady-state performance is only of interest when
the system is robustly stable. The following result is immediate.
Proposition 3.1 Suppose the system (3.1) is robustly stable

% Upon first reading the uncertainty represented by (3.3) can be ignored
since the principal contribution concerns the treatment of (3.2).
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over 8§ and ©. Then foreach G € @ and § € O,

J(G, 8)=tr QR (3.6

where n x n nonnegative-definite { is the unique solution to
0=(A(6)+G)Q+Q(A(8)+G)T+ V. 3.7

We shall only be concerned with the case in which & and © are
compact. Since @ is a continunus function of G and 6, we can
define the worst-case average steady-state quadratic performance

max J(G, @).

3.8)
GEBIES

Sz &

Since it is difficult to determine J,,, explicitly, we shall seek
upper bounds.

Definition 3.2: If Jo., < a, then & is a performance bound
for the nonhomogeneous system (3.4) over & and ©.

IV. SYSTEM STRUCTURE, UNCERTAINTY CHARACTERIZATION, AND
THE COVARIANCE BLOCK-NORM INEQUALITY

A discussed in Section I, (3.1) and (3.4) are assumed to be in
the form of a large scale system with uncoupled local dynamics
and uncertain interactions. Hence, with the subsystem partitioning

r
n=3n

im]

4.1)
the local system dynamics A(f) can be decomposed into
subsystem dynamics according to

A(6) =block-diag {4,(0)} @.2)
i), r

where A,(8) € ;" =", § € O. For convenience, denote
A = block-diag {A4,}.
=1, ,r
Accordingly. R is assumed to be of the form

R =block-diag {R,} 4.3)
1=y

where R, € ™" R, 2 0,i = 1, ---, r. The intensity V and
steady-state covariance Q satisfying (3.7) are assumed to be
conformably partitioned, i.e.,

V={Vi}i,. ¥y € B™Y, (4.4)

Q={Q,} ., Q, € R @.5)
For notational simplicity define

VieV, @ =0Q., i=l,-,r (4.6)

Taking the Frobenius norm of each subblock of ¥ and Q leads to
the r X r symmetric nonnegative matrices V and Q defined by

V= {" Vl/"F}’l.j']' Q - {"Q'/"F}:./-l‘ 4.7

Note that
NQI=NQle [VHe=1VIe.

A few observations concerning the nominal system, i.e., with
G = 0and @ = §. are worth noting. If A4 is stable then so is A,, i
=1, ---, r. and there exist unique, nonnegative-definite §,, P,
€ ®M o= 1, -+, 1. satisfying

0=4,0+0AT+V,
0=Alrp,+p,'A,'+R,'.

(4.8)

4.9)
(4.10)
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Proposition 4.1: Suppose A is asympiotically stable. Then the
nominal performance J,., is given by

Joom 2 JO, H=F wr QR =J u BV, 4.11)
in}

=1

Proof: First note that with G = 0 and 6 = 0 the diagonal
blocks of Q satisfying (3.7) coincide with @,, - -, @,. Thus

JO, 6)=Y u QiR

i=]

=E (vec Q,)TVGC R,

iw}

r
=Y (A, @A) " vec V)7 vec R,

il

=2 (vec V)T(AT® A7)~ vec R,

i=]

=2 (vec V)T vec B,

=]

=itrﬁ,V,. -

i=]

The matrices G € 8 are also conformably partitioned so that

G={G,}, ., Gy € R"*" 4.12)
and & is characterized by
8 :2{G€EN™: 0ml(G)=7, i,j=1,---,r} (4.13)

where vy, 2 0, {, j = 1, -+, r, are given constants. For
convenience, define the r X r nonnegative matrix

G = {"h/}’i,/-l'
The bound G is a matrix majorant for G € 8 in the sense of
(211-[23}.
Remark 4.1: & is compact and convex.
Finally, let symmetric, positive @ € R’ satisfy

(4.14)

Q.S min {Oma(A,(8)® A,0))}, i j=1, -, T 4.19)

Proposition 4.2: Let G € 8 and 8 € O be such that A(6) +
G is asymptotically stable and let n x n Q = 0 satisfy (3.7).
Then Q defined by (4.7) satisfies

Q*Q=s=GQQ+QGQ7T+V (4.16)
or, equivalently,
A vec Q=< <vec V, 4.17)
where
A £ [diag (vec @)]-Go Q. (4.18)
Proof: Expanding (3.7) yields
~1Ai0)Q,+ QAT O] =3 [GuQiy+ QuG 1+ Vy,
. k=]
j=1, o 1. (4.19)
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Bounding the right-hand side of (4.19) from above using (2.4)
yields forall G € @

Y 1GaQy+QuG L1+ V;

k=

F

r
=Y 1S06Qun+ QioSu.nl + Ve

kei

while bounding the left-hand side of (4.19) from below using (2.3)
implies for all § €

Il = [A4.6)Q;+ QAT ()l = [lvec (4:(6)Q;+ QAT O ¢
= [(A4:(6) ® Ai(8)) vec QyllF
Z Omin(A;(0) ® Ai(0)) |lvec Oyl F
= Omn (A;(0) ® A,(0)Qq.
= a(:.j)Qu.;)-

Combining the above inequalities yields (4.16). C
Remark 4.2: Since G =z 2 0, the r? x r? matrix A is an N
matrix [30].

V. THE MAJORANT LYAaPUNOV EQUATION

In this section we interpret (4.16) as an equality rather than an
inequality and consider the Lyapunov-type nonnegative matrix
equation

G+@=08+8G7+v ¢.1

or, equivalently,

A vec §=vec V. (5.2)
Note that since @ and ‘V are symmetric a unique solution of (5.1)
1s necessarily symmetric.

Proposition 5.1: The following are equivalent:

1) A is an M matrix;

iydet A # Oand A-' == 0;

1ii) for each r x r symmetric V = > 0 there exists a unique
x r @ == 0 satisfying (5.1):

iv) there exist 7 X r symmetric 'V » Oand r x r symmetric §
= > 0 satisfying (5.1);

v) diag (vec @) — (I, * §) @ (I, * G) » O and each diagonal
matrix D = 2 diag (vec @) — (/, * Q) @ (/, * GQ) satisfies

p(D'GeG-(J,+ e, *G<L; (5.3)
vi) for each r X r symmetric &o = = 0and 7 x r symmetric 'V
= = 0, the sequence {Q,} %, generated by

Q*+Q,.,-(,+«Q)8i -], +Q)

=(G-1*QPU+QG-L+QT+V, i=0,1, -, (5.4)
converges;

vii) for each r x r symmetric § = 2 0 there exists r x r
symmetric 'V » 0 such that the sequence {&,} ., generated by
{5.4) converges.

Proof: Statements i)-v) are equivalent to i)-v) of Lemma
7.2. Clearly, vi) implies iii), and vii) implies iv). To show v)
implies vi) and vii) note that /2 « (@ Q) = (/,+ Q)e ([, + G)
and

vec (@ *» &, ) = [diag (vec @)] vec &,. .

1009

Thus. (5.4) is equivalent to

vec &, =[diag (vec @)= (1, + Q)@ (I, * )]’
- [G®G-12% (S Q) vec &,+ [diag (vec @)]~! vec V.

Thus, vi) and vii) follow from v) with D = diag (vec @) — (7, »
Ge(l,=Q). O
Since statements i)-vii) depend only upon @ and G we have the
following definition inspired by v)-vii).
Definition 5.1: (@, G) is stable if A is an M matrix.
Remark 5.1: When I, « G = 0, i.e., when the local dynamics
have no structured uncertainty, (5.4) simplifies to

@+Q.,=68,+&G87T+v, i=0,1,:-, (5.9
or, equivalently,
Q.htl:(i”l’l (QQ‘+Q'QT+V), i=0. l, tet. (553)

The following result shows that for zero initial condition, the
iterative sequence is monotonic.

Proposition 5.2: Suppose diag (vec @) - I2* (G e G) » 0.
Then the sequence {&,;} = | generated by (5.4) with €, = Oand V
= = 0 is monotonically increasing.

Proof: To simplify notation we consider the case mentioned
in Remark 5.1. Hence, assume @ » 0. Clearly, if Q¢ = 0, then
(5.5a) implies that %j = Q" »«»V 22 0. Hence, Q, =2 = §,.
Defining AQ,., & Q,., — &,.. (5.5a) yields

AQ,. =a" « (GAQ,+Aa&,87).

Since A@, = = 0, the result follows from induction. C

Remark 5.2: Proposition 5.2 is a particularly useful result in
applications and can be utilized as follows. Setting Qo = 0, the
sequence {&,} can be evaluated by a simple numerical procedure.
As will be shown in Theorem 5.1 below, each §, corresponds to a
robust performance measure & For practical purposes the
increasing sequence {&;} can be generated until either conver-
gence is attained (in which case & = lim,.. & is a robust
performance bound) or a maximum permissible performance level
is exceeded. In the latter case the question of convergence is
irrelevant since the closed-loop system is known to either be
unstable for some G € 8 (i.e., & = o) or exceed acceptable
performance specifications, thereby necessitating system rede-
sign.

We now prove a comparison result for solutions of (5.1).

Lemma 5.1: Assume (@, Q) is stable, let @, € be r x r
nonnegative matrices where ( is symmetric, and assume that

(5.6)
Then (@, €) is stable. Furthermore, let 7 x r symmetric ‘V satisfy

@=<=<® G==<
V=<V, $.7

let & be the unique, nonnegative solution to (5.1), and let & be the
unique solution to

G+Q=68+837+%. (5.8)
Then if § = = 0, it follows that
§<<4. (5.9)

Proof: Since
A ¢ diag (vec @)-C 0 §
is an N matrix, & is an M matrix, and

A - & =diag (vec (R- @) +(G-D) o (§-0)z 20




-‘vv

W

1010 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL AC-32. NO. 11. NOVEMBER 1987

it follows from Lemma 2.3 that A is an M matrix, and thus (@, §)
is stable. Next note that (5.1) and (5.8) imply

vec Q- =A"'A-2) vec @+ A~ vec (V-90).

Since A - A220,A"'=22 0(see Lemma2.2),V -V 2>
0, and § = = 0, it follows that (5.9) is satisfied. O
Corollary 5.1: Suppose (@, Q) is stable and let & be the
unique, nonnegative solution to (5.1). Furthermore, let G € &
and § € O be such that A(6) + G is asymptotically stable and
define Q by (4.7) for n x n Q = O satisfying (3.7). Then

Qs =4. (5.10)

Proof: By Proposition 4.2, Q satisfies the covariance block-
norm inequality (4.16). In the notation of Lemma 5.1 define

@=@,8=6,V=0a+«Q-(5Q+Q87) (5.11)

so that (5.6) is satisfied and (4.16) implies (5.7). Note that with
the notation (5.11), equation (5.8) has the unique solution § = Q
= 2 0. Hence (5.9) implies (5.10).

Theorem 5.1: Assume A is asymptotically stable, O is
continuously arcwise connected, and (@, Q) is stable. Then the
homogeneous system (3.1) is robustly stable over & and ©. and
the nonhomogeneous system (3.4) has the performance bound

&= max { Y ir (Qi6)R) +2 (e F,(O))(QQ)(,_,,]} (5.12)

=}
where n, x n, nonnegative-definite Q,(6) and P(6) satisfy
0=A,6)0.(0)+ QAT B)+ V,, (5.13)
0=AT(8)P,(6)+Pi(0)A(0)+R; (5.14)

and 7 x r @ is the unique, nonnegative solution to (5.1).
Proof: First note that since robust stability is independent of
the disturbances. we can set ¥ = I, for convenience in proving
the first result. Hence. suppose (3.1) is not robustly stable. Since
& is convex (see Remark 4.1). A4 is asymptotically stable, and © is
continuously arcwise connected, *here exist Go € & and 6:[0, 1]
~ O such that A(u) = A(8(n)) + uG, is asymptotically stable
for all 4 € [0. 1), and A (1) is not asymptotically stable. Define

Qi 1 = | etredTwrds, 120, 4 € 10,1]

which is monotonically increasing in the nonnegative-definite
cone with respect to 7. Clearly. the limit

Q) = lim O, 1), u €.

exists and satisfies

0=AWQw+QWATw+1,
Now define r X r nonnegative symmetric Q(u) by
Qe = {IQwlr}, .,
where Q, (1) € R™*" and Q(u) is partitioned as in (4.5). By

Corollary 5.1 with 8 = (), G = uGo, Q & Q(u), u € [0, 1),
and V = [,. it follows from (5.10) that

u € 1[0, 1.

QussQ p €10. D). (5.19)
Hence, by (4.8), (5.15) implies

QW= QuWlrsli&lF & € [0, D). (5.16)

On the other hand. for u € [0, 1) it follows that
QW =0 -0, N+Qu, N-0(, N+Q(. n
20, N-Q, N+Q(1, 1
which implies, for arbitrary x € R”,
xTQWxzxT[QW, - Q(, NIx+xTQ, Nx.
Thus, by continuity of Q(u, ) in g,
11_13} xTQ)xzx7Q(, 1)x, x € R". (5.17)

Now, since A (1) is not asymptotically stable and AW, 1) is
stabilizable, it follows from [37, Proposition 3.2, p. 67] that for
some X € R",

lim 27Q(1, 1)#=oo.
Thus, by (5.17)
lir?fTQ(#))?=ao
u—
and thus

}‘i_l]} QW) F= oo. (5.18)

However, (5.18) contradicts (5.16). Hence. (3.1) is robustly
stable over & and ©.
To derive (5.12) note that since R is block diagonal.

J(G,0)=3 r QiR;= (vec Q)7 vec R,

i=] i=] o

where Q satisfies (3.7). Furthermore, (4.19) implies
vee Ql= - [Al(o) ® AI(G)] -1
. [vec V,+ 2 vec (G,ka."“Q.kGﬂ)] . '
k=] =

Hence, using Lemma 2.1,

JG,0)=Y, [u (Q.(0)R))

i=]

+ 2 (vec [GuQui+ QuG TN vec p,'(o):l

k=]

2 [ll’ (QI(G)RI) + E tr pi(o)(Gika:"' QlkG 'Tk)]

i k=]

< [u (Q.0)R))

+ E (tr P,(o))omn (Gik Qh + Qﬂ'G L)]

ke]

=y [‘l’ (Qi(BIR) + 2 (ur Bi(8)) 2,: Gm(Gu)U-n(Qki)] i

i=l k=)

sy [tr (GOR)+2 (s Bi(8) T 0pes (Gl QuillF

im} k=l
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sy [tr (Gi(6)R)+2 (ir P,(6)) 3 9(.-,“6.“_.-,]

i=) k=1

= z [tr (Qi)R) +2 (r P(OINSQ).i))

t=1

which yields (5.12). ]

V1. EXAMPLES

We first confirm that the damped harmonic oscillator is
asymptotically stable for all constant frequency perturbations.
Hence, let

r=1,n=n=2

and

where v > 0 and w € R. To represent frequency uncertainty let 8
= {0}).6=R,0=0,and

01
A(o)=,«i+0[_l 0].

Note that A (6) is stable for all § € R with poles —» % j(w + 0).
Note that A(f) can be diagonalized by means of the unitary
transformation

R a1 [ -
°‘~5[j —1]'°’ v’i[l j]

S | —e+ite+8) 0
A®B) = ¢ 'A(0)¢-[ 0 —v—j(w+0)] .

so that

Hence. using
AB) e AB)=("'B o~ NAB) @ ABNSD9)
it follows that
Imn(A(8) ® A(6))=2v, € R
Defining [see (4.15)]
A=Q, ,=2v

and G = 0, the scalar majorant Lyapunov equation (5.1) has the
solution

d=v/2,

where V = || V|| r. Choosing V = I, and noting that & = @ = 2»
> 0is an M matrix, Theorem 5.1 guarantees robust stability for
all frequency variations 6 € R.

The next example has been chosen to demonstrate the robust-
ness of a pair of nominally uncoupled oscillators with respect to
uncertain coupling. Hence, iet

n=4,r=2,nm=n=2

and

1011

where v, w,. w; = 0. Furthermore. let 8 = {4} and

|1 0 T
g-[‘m 0]

which denotes the fact that the local subsystem (oscillator)
dynamics are assumed to be known. Since

Omin(A; ® A) =402 + (w;~ w;)}) "2
define

Q= 2 4y + (w; — wy)?] 172
T [4v2 4+ (@ - w)?}1? 2 )

Letting V' = [, yields 'V = 2/,. Solving (5.1) yields
Qun=Qv¥é-v27u+ ‘rfz)/Z\'EV(Vztf- Yizya)
&ua=(2+12)72V20 8~ yi2720),
Qun=@vE~ya1+ 7%,)/2\61'(1'25" Yi2vz)
where
§ =148 6 = (w~w)/2v.
Clearly, & is nonnegative if and only if
Yi2yn <v38. 6.1)

The bound (6.1) characterizes the magnitude of coupling uncer-
tainty for which stability is guaranteed. Note that the parameter &
is a measure of the frequency separation of the oscillators relative
to the damping. When & » 1. (6.1) becomes asymptotically

v
TRYa<3 [w) ~w,| 6.2)

which confirms the intuitive expectation that robust stability is
proportional to damping and subsystem frequency separation.
This result does not appear to be predictable from quadratic or
vector Lyapunov functions.

To evaluate the conservatism inherent in the bound (6.1) we
solve for the actual stability region. To render the calculation
tractable we assume that G, and G;, have the structured form

_ « B,
G,-,—[_élj aj] . ©.3)

By constraining (6.3) the set of coupling variations is reduced,
which may or may not lead to a larger stability region. Thus, our
estimate of conservatism may itself be conservative, i.e., the
actual conservatism may indeed be less than the following
analysis indicates. However, without (6.3) the development
becomes intractable. This calculation will thus be called semiex-
act.

By considering the characteristic equation for 4 + G, lengthy
manipulation shows that A + G is stable if and only if

T1270n <203(— e+ [1+ 831 - €9)]) ) /(1 - €3) 6.4)

where ¢ € (0, 1] is the smallest positive real root of
e=(1+e)[1+631 —€9))"H[2+ 631 — €Y. (6.5)
The majorant bound (6.1) and semiexact bound (6.4) are
illustrated in unified form in Fig. 1. For § » | note that ¢ =
0(5-') and thus (6.4) becomes asymptotically

Ty <rloy—wl.

iR
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Hence, for large & the majorant bound (6.2) is, at worst, and the system has the performance bound
conservative by a factor of 2 compared to the semiexact bound.

To determine the performance bound (5.12) set R = J,. Hence, G = Jaom + V20012 + p2) /M1 ~ 2012021)
it can be shown that

where

Jam=2/v p|z=7|z/ﬁr5"2. (1] ='m/*/2-uf"’.
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On the other hand, the semiexact calculation yields

Joas =

max {[p},+p% + 201200 N+ 28(01202) (1 - N/
b

[26- 4012027 = 28(p1202)3(1 ~ ND)]}.  (6.8)

Fig. 2 compares the semiexact worst-case performance (6.8) to
the majorant Lyapunov equation bound (6.7). To efficiently
illustrate the results the data are specialized to the case p;; = py).
Note that the semiexact performance is plotted for several values
of & because of the explicit dependence of (6.8) on & via §.
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ABSTRACT

Over the past decade a considerable amount of attention has been devoted to the subject of
robustness analysis. However, the current literature on robustness analysis concentrates largely
on the qualitative issue of robust stability. To date, very few results have been developed for
the quantitative issue of robust performance. An exception to this is the recent work of Hyland
and Bernstein in covariance majorant analysis. This work developed bounds on cost functions
which can represent the variances of selected system variables. This paper presents improvements
in covariance majorant analysis. Specifically, less conservative (i.e., smaller) upper bounds are
developed for the cost functions. Lower cost bounds are also developed.
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1. Introduction

Recent technologies have required the modeling and control of increasingly complex systems
such as flexible space structures, electric power systems, large scale manufacturing systJems, and
flexible manipulators. Correspondingly, there is an obvious need for analysis tools which can
qualitatively and quantitatively describe the behavior of these systems in the face of uncertainties
in the representative mathematical models. Thus, over the past decade there have been considerable
interest among the systems research community in robustness analysis for multivariable sysems.

(See for example [14,15]).

However, although significant attention has been given to the issue of robustness analysis,
the current literature concentrates largely on the qualitative issue of robust stability. To date
very little work has been published on the quantitative issue of robust performance. One notable
exception is the application of the u function [2] to performance analysis. In [2] performance is
measured in terms of the L., norm of a specified performance matrix, such as the output or input
sensitivity matrix. However, this is only one possible performance measure. For example, one is
often interested in time-domain performance measures which are expressed in terms of the transient
or steady state behavior of selected system variables (e.g., inputs and outputs) when the system
is subjected to specified signals and disturbances. Covariance majorant analysis [1] another recent
recent development in robustness analysis does measure system performance in terms of steady

state behavior.

Specifically, covariance majorant analysis considers linear interconnected systems which have
structured parametric uncertainty and are subject to white noise disturbances. The analysis of [1]
then develops a robust stability condition and upper bounds on the variances of selected system
variables. In the present paper it is shown how covariance majorant analysis leads to both lower
and upper robust performance bounds. The upper bounds developed here are less conservative

(i.e., smaller) than those of [1].

The paper is organized as follows. Section 2 briefly reviews the developments of {1] and presents
results which are needed in the analysis of the next section. Section 3 then develops the new bounds.
The reduced conservatism of the new bounds is illustrated by the example of Section 4. Section 5

then presents concluding remarks.




Before proceeding some notation and definitions are presented.

IP
zij OF Z(;,5)
Zi;

diag (z1,...,2m)

block-diag (Z1,...,2Zum)

Y=*x2

ZHI

col;(2)

vec(z)

YeZ
Y®Z

Y <<2
nonnegative matrix
tr Z
Omin(Z),0max(Z)
1Zls

21l r

1Z1l4

pzp identity matrix

(1,7) element of matrix Z

(¢,7) matrix block of partitioned matrix Z
diagonal matrix with listed diagonal elements
block-diagonal matrix with listed diagonal blocks

[yi52:5], Hadamard product of matrices Y, Z of equal dimensions

[12-13]
(1/2;;], Hadamard inverse of square matrix Z
i** column of matrix Z
coly(2)
: ze R™*?
colp(2)

[vi5Z], Kronecker product of matrices Y and Z [10-11]

Y ® Iy + Im ® Z, Kronecker sum of matrices Y € IR™*™ an

Z € IRP*? [10-11]

Y:; < Z;; for each ¢ and 5

matrix with nonnegative elements (Z >> 0)

trace of matrix Z

smallest and largest singular values of matrix Z

spectral norm of matrix Z (= opax(2))

Frobenius norm of matrix Z (||Z]|2 = Ezlz?,l)
j

1 ]
absolute norm of matrix Z(= max|z;,|)
0.3

Let Z be the n x n block-partitioned matrix

r
where Z;; € IR™*"5 and Zn.- = n. The block norm matriz [7,3] of Z with respect to the matrix

Z = (Zi5) (i 5=brr)

=1
norm || - || (which is also called the “d block norm”) is the r x r nonnegative matrix

= N
Ze=[Z)s = [11Zsille) (s, 5=1,...0)

d

(1.1)

(1.2)

Thus, Zs and Z y represent respectively the block norm matrices of Z with respect to the spectral

and Frobenius norms.




Majorants [8] are essentially upper bounds for block norm matrices. Precisely, Z € IR"" is a

majorant of Z (with respect to the norm || - ||¢) if

Zy << 2. (1.3)

A matrix P € IRP*? is an M-matriz [4-6] if it has nonpositive off diagonal elements [i.e., p;; <0
for ¢ # j] and positive principal minors. There are many equivalent definitions for an M-matrix.
(See [4]-[6]).

2. Preliminaries

Consider the system
z(t) = (A+ G)=z(t) + w(t) (2.1)

where z € IR™ and w is a white noise process with intensity V. It is assumed that the system (2.1)
represents r (r < n) nominally stable subsystems described by A with uncertain interactions and

dynamics described by G. Specifically,
A = block-diag {4}, (2.2)

r
where A; € IR™*" is asymptotically stable and Zn; = n. The matrices G,V & IR**X" are
=1

partitioned conformably so that

G = [Gijl.s=1,r) (2.3a)
V = VislGi=t,n) (2.3b)
where G,;,V;; € IR* %", In addition,
GeG (2.4)
where
G={GeR™™": G,<<G}. (2.5)

That is the spectral norm of each block G;; of the uncertainty matrix G is bounded above by the

corresponding (i, ) element of the nonnegative matrix G € IR"%". Thus G is a majorant of each
admissible G.

If A+ G is asymptotically stable, then the state covariance Q is the unique solution of the
Lyapunov equation

0=(A+G)Q+Q(A+G)T +V. (2.6)
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Q is partitioned conformably with A,G and V so that

Q = Q5] (i5=1,....) (2.7)
where Q;; € IR %",

Now define the positive matrix A € IR"*" by

Gi; Sonin(A;0A), i,j=1,...,r (2.8)

Also, define A € IR %" as
A £ [diag(vecA)) - G @ C. (2.9)

These matrices appear in the following lemma which presents the covariance Frobenius block norm

inequality initially proved in {1]. An alternative proof based on the block Kronecker product is
found in (3].

Lemma 2.]1. Consider G € G such that A+G is asymptotically stable and let Q be the solution
of (2.6). Then Q satisfies the matrix inequality,

A+Qp<<CQr+QpGT+ V5 (2.10)
which is equivalent to the vector inequality |
AvecQp << vecV p. (2.11)
Definition 2.1. The pair (A, G) is stable if A defined by (2.9) is an M-matrix.
If (2.10) is interpreted as an equality, one obtains the Lyapunov-iike equation
A+Q=GQ+QGT +Vp. (2.12)

or equivalently

AvecQ = vecV 5. (2.13)

Since A is an N-matrix [5] (i.e., it has nonpositive off-diagonal elements), it is invertible with
A1 >> 0 if and only if it is an M-matrix [4-6]. The following result then follows immediately
from the equivalence of (2.12) and (2.13).

Lemma 2.2. The pair (ﬁ,é) is stable if and only if for any V' >> 0, there exists a unique
(nonnegative) solution of Q of (2.12).




Remark 2.1. Q may be computed by inverting the r? x r? matrix 4 iu (2.13). Alternatively, it
is shown in 1], that @ = lim;_. o, Q") where Q(®) >> 0 and the monotonically increasing sequence
-~ . “
{Q(‘) } . is generated by

;i * Q‘i+1 _ (I, * G‘)Q(s’+l) _ Q“(i+1) (Ir * G) ( )
2.14
=(G-1+G)QW + QNG -1 +&)T +Vp, i=0,1,...

or equivalently
é(‘+1) = (A - é - éT)HI * [(é - I G)Q(') + Q(')(é - I * é)r + vF] y 1= 01,... (215)
where G € IR"*" is defined by

- A ..
Giy = §isy 6,I=1,...,r (2.16)

The following comparison result shows that Q is actually a majorant of the state covariance

Q. A proof of this result is presented in [1]. A simplified pl;OOf is given here.

Lemma 2.3. Suppose (Z,G‘) is stable and let Q be the solution of (2.12). Then, for each G €G
such that A + G is asymptotically stable, the solution Q of (2.6) satisfies

Qr <<Q. (2.17)
Proof. Since Qp satisfies (2.10), it follows that for some nonnegative U € IR"*"
A*Qp=GQr+QsCT+Vr-U. (2.18)
Subtracting (2.18) from (2.12) yields
A+(Q-Qr)=G(@-Qr)+(Q-Qr)GT +U. (2.19)
It then follows from Lemma 2.2 that
Q-Qr 220. (2.20)

The proof of the next result on stability robustness is based on Lemma 2.3 and is presented in
(1].

Theorem 2.1. Consider the system described by (2.1)-(2.5) and assume (A, G) is stable. Then
for each G € G the plant matrix A + G is asymptotically stable.
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Although Theorem 2.1 is a useful result in covariance majorant analysis, an equally important
result is that the majorant analysis allows one to obtain an upper bound on the variances of selected

system variables. Thus, in what follows the cost function
JG)=trQR, R=RT>0 (2.21)
is considered where R has the partitioned form
R = [Rys](i,=1,....1) (2.22)

and R;; € IR™*"/, This cost function can represent the variance of one of the system variables.

For example if s given by

s=c’z, ceR" (2.23)
is a system variable of interest, then
R = ccT = J(G) = E(s?). . (2.24)
Now define
Jmin 2 min J(G) (2.25)
Jamax 2 max J(G). (2.26)
Definition 2.2. If for the system described by (2.1)-(2.5), Jmin = @ and Juux < B, then a is a

lower performance bound and B is an upper performance bound.

In [1] majorant analysis was used to develop an upper performance bound 8, for the special
case in which R is block-diagonal (i.e., R;; £0fori # 7). This result is presented below in Theorem
2.2.

Before presenting this theorem define the nominal state covariance Q° € IR"*" to be the
unique, nonnegative definite solution of the Lyapunov equation
0=AQ° +Q°AT +V. (2.27)
Q° has the partitioned form
Q° = [@%]G.5=1,...) (2.28)

where Q?; € IR™*"s. Also, for ¢ = 1,...,r define P’ € IR"X"™ to be the unique nonnegative

definite solution of
0= ATP? + P/ A; + Ry;. (2.29)
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Theorem 2.2. Assume (.i,é) is stable. Then for each G € G, A+G is asymptotically stable. In
addition, if R is block-diagonal then the system described by (2.1)-(2.5) has the upper performance
bound

B =tr QOR +2 Z(tr Ho)(éé)(;.;) (2.30)

=1

where @, Q° amd Py are the respective solutions of (2.12), (2.27) and (2.29).

3. Improved Peformance Analysis

The upper performance bound §; presented in Theorem 2.2 is based upon developing a ma-
jorant @ of the state covariance Q by beginning with (2.6), the Lyapunov equation in Q. In this

section @ is expressed as
Q=Q°+4Q (3.1)

where Q° is the solution of (2.27). Subtracting (2.27) from (2.6) and using (3.1) yields
0=(A+G)AQ+AQ(A+G)T +GQ° + Q°GT. (3.2)
The perturbation AQ has the partitioned form
AQ = [AQi5l(.5=1,....r) (3.3)

where AQ;; € IR™*"s. In what follows it is shown that by using (3.2) to develop a majorant AQ

of AQ, it is possible to develop a less conservative (i.e. smaller) upper performance bound than

that of Theorem 2.2. In addition, the analysis of this section develops a lower performance bound’

which has no counterpart in [1].

Consider any two matrices M, N € IR®*" partitioned identically. Then as shown in (3],

M+ N|p <<Mr+Np (3.4a)
[MN]|r << M,Nr (3.4b)
[MN]F << Hpjv_s. (3.4c)

Using (3.4) it follows that for each G € G,

[GQ° + Q°GT|r << [GQ%F + [Q°GT|F
] -0 =T

<< GsQr+QrGs

r+QrGT. (3.5)

e,

.




Lemma 3.1 which presents Frobenius block norm inequalities for Q° and AQ is now an immediate

result of Lemma 2.1 and (3.5).

Lemma 3.1. Consider G € G such that A+ G is asymptotically stable and let Q° and AQ be
the unique solutions of (2.27) and (3.2). Then Qf and AQ satisfy

A*Qp <<V§ (3.62)
A+AQr << GAQr+AQrGT +GQr + QrGT. (3.6b)
Now interpret (3.6) as equalities to obtain
A+Q°=Vp (3.7a)
A+ AQ =GAd + AQGT + GQF + QGT. (3.7b)

Lemma 3.2 which shows that §° and AQ are majorants of Q° and AQ follows immediately from

Lemma 2.3.

Lemma 3.2. Suppose (A, G) is stable and let @° and AQ be the (unique, nonnegative) solutions
of (3.7). Then for each G € G such that A+ G is asymptotically stable, Q° and AQ, the respective
solutions of (2.27) and (3.2) satisfy

Qr
AQr

IA
IA

Q° (3.8a)
A

Q. (3.8b)

IA
IA

An important result is now presented. This result reveals that the sum 6;- + AQ is a smaller
majorant of the covariance Q than is Q. This result is subsequently used to develop lower and upper
performance bounds a; and #; and to demonstrate the reduced conservatism of f; compared to

the performance bound B; described in Theorem 2.1.

Lemma 3.3. Suppose (.Z,G‘) is stable and let Q and AQ be the (unique, nonnegative) solutions
respectively of (2.12) and (3.7b). Then for each G € G, Q and Q° the solutions respectively of
(2.6) and (2.27) satisfy

Qr << Qr+4Q<<q. (3.9)

Proof. It follows from (3.1), (3.4a) and (3.8a) that

Qr=[@°+AQ|r <<Qr+BQr <<Qp+A

O

(3.10)
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which proves the left hand inequality in (3.9).

Now, let Q be the (unique nonnegative) solution of

+AQET + GQ° + §°¢T.

O»

=GA

On

AxA

Subtracting (3.7b) from (3.11) yields

Ax (80 - A0)=G(A0 - AQ) + (A0 - AG)GT +6(0° - Q) + (¢° - TF)GT.

Since Q° >> Qp,
G(Q°-Qr) +(@° -QF)GT 2> 0.

It then follows from (3.12), (3.13) and Lemma 2.2 that

o

AQ<<a

Adding (3.7a) and (3.11) yields

A+ (00 +88) = 6(@° +Ad) + (0° + A0)ET + Vr.

Comparing (3.15) and (2.12) reveals that

=4.

O»

Q°+a
Thus, using (3.8a), (3.14) and (3.16) yields

=Q

On

Qr+AQ<<Q°+8Q<<@°+A
which proves the right hand inequality in (3.9).
Notice that substituting (3.1) into (2.21) yields
J(G) = J° + AJ(G)

where
J°2tr Q°R
A
AJ(G) = tr AQR.

9

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)




_1—

Substituting into (3.20) the partitioned forms of R and AQ given respectively by (2.22) and
(3.3) gives

r r r

AJ(G) =) tr AQuRi+ Y > tr AQuRu. - (3.21)
=1 s=1 j=1
Fi

An alternative expression for the first summation in (3.21) is presented below in Lemma 3.4.

Lemma 3.4. Consider the system described by (2.1)~ (2.5) and assume A+ G is asymptotically
stable. Then AJ(G) given by (3.21) can be expressed as

r r r r
AJ(G) =) tr PP(Gi;Qs + QiiGT) + DY tr AQi,Rj (3.22)
=1 y=1 i=1 =1
b2

Proof. The perturbation AQ solves (3.2) which by using (3.1) can be expressed as

0= AAQ + AQAT +GQ + QGT. (3.23)
Using the partitioned forms of the matrices amd considering the (1,¢) block of (3.23) gives

r
0= AAQui + AQuAT +) (GiiQsi + Qi;CT). (3.24)
=1
Then by using the appropriate Kronecker product identities [10- 11] (3.24) can be expressed as
: r
vecAQy; = -—(A, %2) A,-)-l Zvec(G.-,-Q.-j + Q;,‘G'-Tj). (3.25)

s=1

Recognize that for any two square matrices Y and Z

tr YZ = (vecY)TvecZ. (3.26)
Then using (3.25) and (3.26) gives
tr AQy;Ri;i = — z':[vec(G.-jQ,-,- + QG T(As ® A:) " TvecRy;. (3.27)
i=1
But it follows from (2.29) that
vecP? = (A; ® A;) " TvecRy; (3.28)
and so .
tr AQuiRi = — ) _[vec(G:;Qji + Qi;G )| TvecP? (3.29)
j=1
10
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which by using (3.26) can be expressed as
tr AQy Ry = tr P?(Gi;Qj + Qi;Gl). (3.30)

The proof is completed by substituting (3.30) into (3.21).

The main results of this paper are given below as Theorem 3.1 and Corollaries 3.1 and 3.2.
Before presenting this result two important trace inequalities are given. First, for P € IR9%? define

the matrix I norm by

1P ES Y Ipis - (3.31)

s=1 5=1

Proposition 3.1. For each M € IR?*? and P € IR9*?,

| tr MP |< |M||4|P]|s. (3-32)

K | .
[t MP|=| 3 mipsi |

$=1j=1

1 4 q
<D Imillpsi |

=1 y=1

< 1Ml allPlls-

If certain structures of M and P are known, a much less conservative upper bound on | tr MP |

may be given. The next result is derived in [9].

Proposition 3.2. Consider M, P € IRP*? sych that M = MT > 0. Then
| tr MP |< (tr M)||P].. (3.33)

Now the main results of this paper are presented.

Theorem 3.1. Suppose (ﬁ,é) is stable. Then A + G is asymptotically stable for each G €G

and

max | AJ(G) |< AJ (3.34)

where . .,
aJ =23 ( P?) (C@5 +4Q))  +D0 D AQu IRl (3.35)

i=1 ' i=1 s=1

I
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Proof. The asymptotic stability of A+ G is simply a restatement of Theorem 2.1. So for each

G € G consider the cost perturbation AJ(G) described by (3.22) and recognize that
| AJ(G) [<| AJA(G) [+ | AJB(G) |

where

| AJA(G) IS D° D | tr P2(GiiQji + Qu;GT) |

i=1y=1

r r

| AJB(G) 1D | tr AQi;Rj: |
=1 J=1
i

Using (3.33) and (3.9) it follows that for each G € G
| tr P7(GiiQji + QisGF; | < (tr P?)|IG:;Q 5 + Qi GL|
< 2(tr P?)|IGjllallQjslle
< 2(tr P?)||Gyjll6ll @il F
< 2(tr P?)Gj [(5;-)(:',.-) + (AQ‘)(,-,.-)]

which substituting into (3.37a) gives

| ATA(6) < 23 (tr P?) (6@ +80))

=1
Also, using (3.32) and (3.8b) it follows that
| tr AQi; Rji | < |AQu; 11 4l|Rsills
< |AQsjlIFll Ryillr
< AQi )l Ryl

(i8)

which substituting into (3.37b) gives

r o r
| AJB(G) |< E E AQi I Rssllr-

s=1 s=1

i

The proof follows from (3.36), (3.38) and (3.39).

(3.36)

(3.37a)

(3.37b)

(3.38)

(3.39)

Remark 3.1. One may be tempted to apply the inequalities (3.8b), (3.32) and (3.33) to the

expression for AJ(G) given by (3.21). This yields
max | AJ(G) |< AT
GeG

12
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where . o,
AT =3 (tr R)AQuq + D D IRiilliAQ( - (3.41)
= =
However, it can be shown that
aJzat (3.42)

such that AJ is a more conservative bound for the magnitude of the cost perturbation than is AJ.

It is easily seen from (3.18) that
J°-|AJ(G) IS J(G) £ J°+ | AJ(G) | (3.43)

where J° is given by (3.19). The following corollary is then immediate.

Corollary 3.1. Under the conditions of Theorem 3.1 the system described by (2.1)-(2.5) has

the lower performance bound a; and the upper performance bound 8, given by
a3 =tr (Q°R) - AS (3.44)

Bz =tr (Q°R) + AJ (3.45)
where AJ is given by (3.35).

Remark 3.2. It is important to recognize that the results of Theorem 3.1 and Corollary 3.1

actually allow multiple objective analysis. For example if the analyst is interested in m costs
Ji(G)=tt QRY, i=1,...,m (3.46)

representing say the variances of m system variables then Corollary 3.1 yields lower and upper

bounds af*) and B(*) such that for each G € G,

e <J(G) <Y, i=1,...,m. (3.47)

The next corollary compares the upper performance bounds of Theorem 2.2 and Corollary 3.1

for the case in which R is block-diagonal.
Corollary 3.2. Assume that R is block-diagonal. Then under the conditions of Theorem 3.1
the upper performance bounds #; and f; given respectively by (2.30) and (3.45) satisfy
B2 < . (3.48)
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In addition, if
h Q°=Qr (3.49)
then
ﬂz = ﬂl. (3.50)
. Proof. Subtracting (2.30) from (3.45) yields
Br-pi=2) (e P) (6@F+2Q-Q) - (3.51)
=1 "
t .
' It then follows from (3.9) that
Qr+AQ-Q<<0 (3.52)
which implies that
B2— B <0 (3.53)

Now assume (3.49) holds. It then follows from (3.12) that

Ad = Ad. (3.54)
Using (3.49), (3.54) and (3.16) gives
0.+40=0°+80=0°+00=0 (3.55)
which substituting into (3.51) reveals
Ba— B =0. (3.56)

4. An Example

This example considers the robustness of a pair of nominally uncoupled oscillators with respect

to uncertain coupling. Specifically, consider the system described by (2.1)-(2.5) with

1

1

3

n=4, r=2 ni=n3=2 (4.1) %
-.1 1 -2 2

A = ’ (42)
-1 -1 -2 -2

1 8 1 8 - N
V = block-diag ([ ] , [ ]) (4.3)
81 8 1
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[0 a1
é= [ ] : (4.4)
d 0

Notice that the eigenvalues o-f Ay and A, are given by
(A1), =125 (4.5)

\(Aa)]y 3 = —2 52. (4.6)

The matrix A defined by (2.9) is an M-matrix and thus the system is stable for each G that satisfies
- , G, <<G. (4.7)
Now consider the quadratic performance J(G) defined by (2.1) with

R=1I,. (4.8)

The results of the robust performance analysis are presented in Table 4.1. The values J; and Js

were obtained by generating a set G of 10,000 random G matrices satisfying

_ B G.=G (4.9)

and letting
Jp= Joax J(G) (4.10a)
P { Js = Joip J(G). (4.10Db)
Obviously,
N
JL € Jnax = max J(G) (4.11a)
b s
| Js 2 Jmin = in J(G). (4.11b)
It is conjectured that
P Js = Jmin (4.12b)

and thus Jr are useful indicators of the conservatism inherent in the performance bounds 8, 5;

and as.

The parameter J; predicts that Jy,.x is 6.81% greater than the nominal performance J°. The

performance bounds 8; and B3 respectively indicate that Jy,,x may be as much as 30.4% or 23.8%

15




greater than the nominal value. Thus in this example, the new upper performance bound S; is

_ significantly less conservative than the original upper bound ;.
Table 4.1
L nominal performance, J° 15.0000
upper performance bound, 8; 18.5704
. upper performance bound, 5, 19.5579
largest random performance, J 16.0208
lower performance bound, a3 11.4296
F smallest random performance, Js 14.6103
'* Acknowledgements. We thank Larry Davis and Dennis Bernstein for fruitful discussions which

inspired many of these results. Dr. Bernstein was particularly helpful in the development of Remark
3.1. We also wish to thank Jill Straehla for typing the original manuscript and Allen Daubendiek

for performing the numerical calculations.
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Complex and large scale systems are often viewed as collections of
interacting subsystems. Properties of the overall system are then deduced
from the properties of the individual subsystems and their interconnections.
This analysis process for large scale systems usually requires manipulating
the matrix subblocks of block-partitioned matrices. Two tools which have
found uge in linear systems analysis are the Kronecker product and the
matrix modulus (laijl). However, these tools are designed for matrices

partitioned into their scalar elements. Thus, this paper defines and
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generalizations of the Kronecker product and matrix modulus to block-
partitioned matrices. The utility of the results is illustrated by deriving
in gimplified fashion a recent result in robustness analysis.
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1. Introduction

In the analysis of complex and large scale dynamic systems it is often
advantageous to regard the overall system as a collection of interacting
subystems. Properties of the aggregate system can then be deduced from the
properties of the individual subsystems and their interconnections.

(See e.g. [6,7.11,14] for a small sample of the numerous published results
which take this approach.) For linear systems this type of analysis often

involves manipulating the matrix subblocks of block-partitioned matrices.

Some tools that have been useful in systems analysis are the Kronecker
product and the matrix modulus. The Kronecker product, for example, has
found use in the solution of linear matrix equations [1,4,10,17], the
development of matrix calculus [4,9,13,16] and dynamic sensitivity analysis
[3,4]. However, the Kronecker product was designed for matrices partitioned
into their scalar elements. For example if A, Q, and B are matrices, then

the Kronecker product allows one to write
vec(AQB) = (BT ® A)vec(Q) (1.1)

where vec(+) is the vector valued operator which stacks the columns of a
matrix in a vector. However, suppose Q were partitioned into matrix

subblocks. Then the operation (1.1) destroys this structure.

The matrix modulus of the matrix Q is the matrix lqij' and has been
used to develop robust stability conditions for dynamic linear systems
[11,18] . However, if Q is partitioned into matrix subblocks, the matrix
modulus is too fine in that it is based on a property (the absoluté value)
of the scalar elements of a matrix. Conversely, a norm IIQIIe of the matrix
Q is too coarse in that it totally ignores the block-partitioned structure

of the matrix.

What are obviously needed are tools designed specifically for block-

partitioned matrices. One such collection of tools has been based on matrix




majorants and minorants [5]. The purpose of this paper is to develop
additional results based on the block Kronecker product and the block norm
matrix, generalizations respectively of the Kronecker product and modulus

matrix to block-partitioned matrices.

The paper proceeds as follows. In Section 2 the block Kronecker
product is introduced and some of its algebraic properties are presented.
Then, in Section 3 the block norm matrix is defined and some related
equalities and inequalities are given. Next, Section 4 presents results on
block-diagonal and diagonal matrix structures. These results are useful in
Section 5, which uses results developed in the previous sections to derive
in a simplified fashion the covariance block norm inequality of [7,

Proposition 4.2].

Before proceeding we present some notation., It is assumed that the

matrices are in general complex.

Ip pxp identity matrix
* Hadamard product [15]
®. © Kronecker product, Kronecker sum [4,8]
coli(z) ith column of matrix Z
coll(z)
colz(z)
vec(Z) . » 2 is a pxq matrix
col (2) %
B q ‘
ZT transpose of matrix 2 -
ZH conjugate transpose of matrix Z
24 (i,j) element of matrix 2 '%
L -
Z << 2 z,, <z,., for all i and j
- ij = "ij
nonnegative matrix matrix with nonnegative elements (Z >> 0)
tr(2) trace of matrix Z *




T

N

re

AL (@), a2 minimum and maximum eigenvalues of Hermitian matrix Z

min max

01(2) singular value of matrix Z

ahin(Z)’ ohax(Z) smallest and largest singular values of matrix Z

IIZHe any norm of matrix Z (not necessarily induced by a
vector norm)

IIZII¢ any norm of matrix Z induced by & vector norm |[-]l,
(||Z||¢ = mpax l|Zy1|a)

llyl&x=1
Hyll, Euclidean nomm of vector y
IIZH8 Spectral norm of matrix Z, induced by the Euclidean

norm ll'llz

. . 2 _ 2
11z IF Frobenius norm of matrix Z ([(Z| lF -}i; %lzij (D)

2. Block Kronecker Products

This section introduces the block Kromecker product and a related
vector valued function vecb(+). The algebra associated with the block
Kronecker product is also presented (in Table A). The reader familiar with
the standard Kronecker algebra will quickly recognize that the block
Kronecker algebra is almost identical. This is essentially due to property

(A.3) of Table A.

It should be recognized that below the primary consideration is the
special case of square matrices with square diagonal blocks. This

restriction is to avoid notational complexity and confusion. However, most

of the results extend to more general partitions. The extensions .

require. a clear definition of how various matrices are partitioned (such as

when multiplying rectangular matrices A and B).

Consider the nxn partitioned matrices

A= [A.] (2.1a)

Al (e = 1heeiuD)




- 1'....r) (2.1b)

[
[
~~
He
-
(&)
1

T
where A,., and B,., are n.xn. and Zn. n., The nle vector vecb(A) is
ij. ij i™j i
i=1

defined by

[ vec(A,) | )

vec (Arl)

vec (AIZ)

vecb(a) £ vee lArz) . (2.2)

vec (Alr)

vec(A )
rr

=

Notice that vecb(+) is a linear operator.

It is desired to define an operation A @ B such that for an nxn matrix

D partitioned identically to A and B
vecb(BDAY) = (A @ B)vecb(D). (2.3)

This motivates the definition of the block Kronecker product of A and B,

denoted by A®@ B. A® B is the n2m2 matrix defined by

- -~
A11®B AIZGB oo A1r®B
Aéné A2193 AZZQB oo AerB
. . t . . (2.4)
A @B A,.®B A @B
L rl r2 rr i
4




h D where the n.n x njn matrix product Aij ® B is defined by

8 i
_ Ajg @By Ay @By, oo A OB ]

, A, @B 2 | A58 By Ay @By oo A OB,

. * . . . (2.5)

ij .
_, L L . :
I ij ® B1-1 ij ® B1:2 e A1'.j ® BrrJ

The block Kronecker sum of A and B is denoted by A ® B and is defined by

F A®B=AQI +I ®B. : (2.6)

Recognize that if the matrices A, B and In are partitioned into their scalar
elements (i.e., r=n) then A@Q B = A®B and A®B = A ®B, such that the
block Kronecker product and block Kronecker sum reduce respectively to the .

Kronecker product and Kronecker sum.

Some of the basic algebraic properties of the block Kronecker product
and block Kronecker sum are presented in Table A, In this table it is
assumed that A and B are nxn matrices partitioned as in (2.1) and C and D
are nxn matrices partitioned identically to A and B. Also, f(°+) denotes an
analytic function. The eigenvalues of A are denoted by A(i) (i=1,...,n) and
a(i) denotes the corresponding eigenvectors. Similarly, the eigenvalues of
B are denoted by }l.(i), and B(i) denotes the corresponding eigenvectors.
Recognize that if A or B have redundant eigenvalues then it is possible to
have a(j) - of¥) or B(j) = g for j#k. Thus statements (A.15)-(A.17) in

Table A are not redundant.

To understand (A.17) it is necessary to define the block Kronecker

product of two vectors., So consider the n dimensional partitioned vectors

X7 = [x'f. xz. cees x:] (2.7a)
T _ T T T
y = [yll an ce ey yr] (2.7b)




T

where x; and y; are n, vectors and Zni = n. Then, the nle vector

x @ y is defined by

where

(A.1)
(A.2)
(A.3)
(A.4)
(A.5)
(A.6)
(A.7)
(A.8)
(A.9)
(A.10)

(A.11)

i=1

7 (2.8)

[ o

* (2.9)

Table A
Algebra of Block Kronecker Products
vecb (ADB) = (B'r ® A)vecb(D)
vech(AD+DB) = (B® & A)vecb (D)
A®B = PT(A ® B)D for some permutation matrix P
(A+B) @ C=A®C+BQ®C

A® (B+C) = AQ@B +AQ®C

aemT =T 8" -
(A @ B)(C ® D) = (AC) ® (BD)

agm l=aslge!

B® A =Q(A®B)Q for some permutation matrix Q
det(A ® B) = [det(A)det(B)]™

tr(A x B) = tr(A)tr(B)




(A.14)

(A.15)

(A.16)

(A.12)
t: @
. (A.13)

(A.17)

in detail

Proof of (A.1).

f(In ® A I.® £(A)

f£(AQ® I) =£4) @I

exp(A @ B) = exp(A) ® exp(B)

The eigenvalues of (A @ B) are the nz numbers
A8 (g 5=1,2, 00 00m)

The eigenvalues of (A @ B) are the n2 numbers
AL (5 521,200 0m)

a(‘L) ) B(J) is an eigenvector of A @ B with
eigenvalue A(i)ld-(:') and is also an eigenvector of

A ® B with eigenvalue X(i)#(j) .

The proofs of most of the properties presented in Table A are easy once
the validity of (A.1) and (A.3) is established. Thus the proofs of these
two statements are presented and then the proofs of the remaining results

are discussed with the exception of property (A.17) whose proof is presented

By definition

B .
vec ( (ADB) 11)

vec((aDB) )

vec ( (ADB) 12)

vech (ADB) = vec((aDB) ) (2.10)

vec ((ADB) )

vec ( (ADB) )
L. -




The (p,q) block of (ADB) is given by

r r
- (ADB = A .D..B. . (2.11)
hom) g = 20 24y 58sq

i=1 i=1

Also,

vec(A .D..B. ) = (B

T
i T oA . D..). (2.12)
pj ji iq 1q ® ApjIvec®yy)

Substituting (2.10) and (2.11) into (2.9) shows that vecb(ADB) may be
expressed as an rxr block matrix where the (p,q) block has dimension

nn xnn and is given b
P"q g y

-

B T
A,. D.
Z(qu ® 1J)vec( Jq)

J
T
. D,
; (qu ® AzJ)vec( Jq)
J

[vecb (ADB)] =
Pq . (2.13)

T
;mqp ® Arj)vec(qu)

| J -

or equivalently.

-
vec (D lq)

T vec (D, )
= ®
[vecb (ADB)] pq (qu A) 2q

. . (2.14)

Lvec (qu ) J

(A.1) follows from (2.14).0

Proof of (A.3). Consider the equation

ADB” = C (2.15)

which is equivalent to




-

(A ® B)vec(D) = vec(C). (2.16)
Applying (A.1) to (2.15) yields
(A @ B)vecb(D) = vecb(C). (2.17)

Now, there exists a permutation matrix P such that

vecb(C)

Pvec(C) (2.18a)

vecb(D) = Pvec(D). (2.18b)

Substituting (2.18) into (2.17), premultiplying by P.r and using PP =1 2

n
yields
PT(A & B)Bvec(D) = vec(C). - (2.19)
Subtracting (2.16) from (2.19) yields
(eT(A & B)P - (A ® B)]vec(D) = O. (2.20)

Since (2.20) is valid for all choices of D it follows that the expression in

[ ] is identically zero.O
(A.2) now follows from (A.1). (A.3) implies that
= T
A®B = P(Ag B)P", - (2.21)
The proofs of (A.4)-(A.9) are then obtained by substituting (2.21) into the
equivalent expressions for the standard Kronecker product and Kronecker sum

[4,8] . For example, substituting (2.21) imto

(A®@ B)(C®D) = (AC) @ (BD) (2.22)




" v

L

—— e S m o e—e e e v4 w e rer ae e e S amas e e e . . PO S

yields
P(A ® B)PTP(C & D)PT = P(AC).® (BD)PI. (2.23

Pre- and post-multiplying (2.23) respectively by PT and P yields (A.7).

The proofs of (A.10)—(A.11) and (A.15)-(A.16) follow from the
equivalent results for the Kronecker product and Kronecker sum {4,8], the
property (A.3) and the fact that the determinant, trace and eigenvalues of a
matrix are invariant under similarity transformation.

¥ ELSTEIY . o

Since f(°) is analytic, there exists a scalar sequence {fi}i=0 such

that @
N
£ = Y £ " (2.24)

n=0

Also, from (A.7) it follows that

(1 @ pNi=1 @Al (2.25a)

n
o>
]|
-

(a® I“)i 1 (2.25b)

The proofs of (A.12) and (A.13) follow from (2.24) and (2.25). (A.14) is a
direct result of (A.12) and (A.13).

Finally, the proof of (A.17) is presented. .

Proof of (A.17). Let coll(M) denote the first column of the Qatrix M

and let the nxn matrices E and F satisfy

col, (E) = od (2.26a)
eo1, (8) = g3, (2.26b)
10




Then,
eol, (aE) = A(HalD (2.27a)
cot, 8F) = gHul9), (2.27b)

Using (A.7) one may write

(A®@B)(E® F) = AE @ BF (2.28)
and thus
(A® B)col, (E ® F) = AE @ BF. (2.29)

Recognize that for any nxn matrices M and N
coll(M @N) = coll(H) ® coll(N) . (2.30)

The proof is completed by using (2.30) and substituting (2.26) into (2.27)
to obtain

(i) =

a & B) (P g g3y = N

g3V 3 g, (2.31)

3. Block Norm Matrices

This section defines the block norm matrix and block comparison matrix
of a given matrix. Then some basic properties of the block norm matrix are

presented.
Consider the pxq partitioned matrix

N = [Nij] 3.1)

(i=1. ...,u; j=1. ooc.v)

11




——

u v
where Nij is pixqj. Zpi = p and Z q; = q. Then for any matrix norm
i i

Il-lle define the uxv block norm matrix ﬁo [12] by

N, = [N]. &
No = INg = LHIN;i gl 5oty 0ups 5o1uennna). 3.2)
The nonnegative matrix ﬁe is a generalization of the modulus matrix
([lNijl]) for scalar partitioned matrices
Also, consider the pxp partitioned matrix
M = [Mij] (i.j=1.....l1) (3o3)

where M‘j is P;XP;- Let 'l'llﬂ denote a matrix norm induced by the vector

norm llolla and define the uxu block comparison matrix §¢ [12] by

= e
My= Mg % 3305 500,000 (3.4a)
where
S I | :
m., = IIMiillﬂ ‘ ‘ (3.4b)
LY =_I'Mij||¢ for i#j. (3.4¢)

o . L -1, -1 _ .
Here it is assumed that if M.. is singular, then TIHiiII¢ = 0. ¥g is a

generalization of the comparison matrix [2] for scalar partitioned matrices

Some of the properties of block norm and block comparison matrices are
presented in Table B. However, before discussing and proving these

properties we state the following results on matrix norms.

12
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Proposition 3.1, Let U be an mxn matrix and V an nxp matrix. Then

a-min(u)llvlll, < Huvllg < 0 W1V (3.5a)
Hullge, . (V) < Hovilg < Huligo (M. (3.5b)

Proof. Express llUVHé as

vl = ex(Fom. 3.6)
But UHU has the modal composition
vy = £'ne (3.7)
where E is unitary and
Q = disglo? @}, (3.8)
Thus,
lovii2 = tr(%v) = trQEVWED). (3.9)
It follows that 1
o-:in(U)tr(EVVHE) < v ¢ o2 _(Wer(EWED. (3.10)
(3.5a) then follows since ] .‘H
trmvﬁ) = te(wh) = 11112. (3.11) J

(3.5b) is proved similarly by usirg

Hovl12 = exwv'o™). O (3.12)

5 4 .4




Proposition 3.2. Let U and V be arbitrary matrices. Then,

T (T®V) = O'w(U)O'mu(V). (3.13)
Proof.
o wew =\ (ToMNweN. (3.14)
max max .
Using known properties of the Kronecker product [4,8] it follows that
o2 WV =i (00 @ VW)

xmax(uun)xmax(vv“)

2
%nax '

2 g
U)o'ka).D (3.15)

Proposition 3.3. Let U be an arbitrat_'y matrix. Then,

[lvee (@) 11 = 11011, (3.16)

Proof. The result follows from the definition of the Frobenius norm H-HF.D
In Table B, c denotes a scalar, M is a pxp matrix partitioned as in
(3.3), N and R are pxq matrices partitioned as in (3.1) and P is an sxp
matrix partitioned compatibly with M and N. A, B and D are nxn matrices
partitioned identically in the form (2.1). The partitions of vecb(D) are
assumed to be the vectors vec (Dij) and the partitions of (A ® B) are chosen

compatibly (i.e. the partitions are all of the form Aij ® Bkl).




S ¥ | | g A  Jam -

Table B
Block Norm Matrix Properties

= ICINe

(B.1) [Cnl

(B.2) (MRl o << Ny + Ry
(B.4) (BNl << P N
(B.5) [BN]p << BN
(B.6) Nl 2> M N
(8.7) - [A®Bl_=A ®3,
(B.8) [A®B)_ <A ®F,

(B.9) [vecb(DS]F = vec(ﬁF)

(B.1) and (B.2) follow immediately from the norm properties
I(cNIle = [ef HNIIe and the triangle inequality,
HN+R||e < llNlle + ||R||9. (B.3) is a result of the triangle inequality
and the induced norm property ||PN||¢ < ||P||¢||N||¢-

Before considering the remaining results. recognize that

°&ax(“ij) = IINiJ.IIs (3.17a)
-1,,-1
°hin(Mii) = "“ii"s . (3.17b)

(B.4) and (B.5) then follow respectively from the triangle inequality and
the right hand side inequalities of (3.5a) and (3.5b).

15




Proof of (B.6).

u
1M 1l = 1IMN, o+ Z"ik“kj"s-
k=1

k#i
It then follows from |IN+R|| > |IN]] - |IR|| and (3.5a) that
u
II(MN)ijllF 2 amin(Mii)IINij||F - N ZM&NijIF.
k=1
k#i

But since

u u
1122 My oty € DM TN,

k=1 k=1

k#i k#i

it follows that

u

HOm) Tl 2 o (DTN 4 D06 Mg T TN
k=1
k#i

which is equivalent to

u
JCOMRTEES BRI
k=1

(B.6) follows from (3.22). O

Proof of (B.7).

(A®B) = [Aij ® Bl (i,j=1see0,1)

16

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)




where

13 @811 A3y @By e A 0By

ij ij ij
A,.®B = . . ‘. . . (3.24)
lJ L) L ] » .
Alj ® Brl Alj ® B1'2 Alj ® Brr
L J
It follows that
(A® B)s = [(Aij ® B)s] (1,3=1p00nrr)” (3.25)
Using (3.13), write
”Ai.jQBkl”s: ”Aij”s“Bklns' (3.26)
Substituting (3.26) into (3.24) yields
[Aij ®B]_ = [As] ist. (3.27)

(B.7) follows from (3.25) and (3.27).0

(B.8) now follows from (B.2) and (B.7). (B.9) is a result of (3.16).

4, Diagonal Structures

In this section results concerning block-diagonal and diagonal matrices

are presented. These results are used in the example of the next section.
Assum: that A and B are nxn matrices of the form

A = block-diag{A,}T_ (4.1a)
i’i=1

17




_ Cas r
B = block dxag{Bi} i=1 ' (4.1b)

3
z: = . 2 2 .
where A, and B, are n.xn., and n. =n. Then A® B is the n'xn  matrix
i i i i

i=1

= - _ s r
A®B = block dlag{Ci} i=1 (4.2a)

where Ci is the n.n x n.mn block-diagonal matrix,

(4.2a)

Thus A ® B is block-diagonal with diagonal subblocks of the form A ® Bj.
It follows that A @ B is the nle'l2 matrix
A®B = block-diag{D,} 'i’= (4.3a)

1

where Di is the n.n x n.n block diagonal natrix,

D, = A.®B . (4.3b)

Thus A ® B is block-diagonal with diagonal subblocks of the form Ai ® Bj.

. 2 . 2.2 . .
Now suppose v is an r vector and E is an r'xr” diagonal matrix.

Express E as
_ s r
E = block dlag{Ei} i=1 (4.4a)

where the rxr diagonal matrix Ei is given by

18
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E, = diag{;ij} . (4.4b)
Then

vec-l(Ev) = Brvec l(v). (4.5)
where "*" denotes the Hadamard product and

E = [eij] (i.j=1..-..r). (4.6)

s. An Illustrative Example

We now use results from Sections 2, 3 and 4 to derive the covariance

block norm inequality found in [7, Proposition 4.2].

Consider the nth order system

x(t) = (A+3)x(t) + w(t) (5.1)

where w(t) is white noise with intensity V. It is assumed that the nxn

matrix A is a stability matrix of the form

_ s r
A = block dlag{Ai}i=1 (5.2)

where Ai is nxn, () n.=n) and represents the dynamics of the ith

1
subsystem. G is an nxn matrix partitioned compatibly with A. The off-
diagonal blocks of G represent the uncertain interactions among the

-~

various subsystems. It is assumed that for some nonnegative rxr matrix G,

G, <« G. (5.3)

-~

Notice that G is a matrix majorant of G [5].

19




Assuming (A+G) is a stability matrix, the asymptotic state covariance Q

satisfies the Lyapunov equation,
0 = (A+G)Q + Q(A+G)T + V. (5.4)

Assume that all matrices in (5.4) are partitioned compatibly. Then

operating on (5.4) with vecb(:) and using (A.2) yields
-(A @ A)vecb(Q) = (G @ G)vecb(Q) + vecb(V). (5.5)

and thus

-(A ® A)vech(Q)] = [(6 ® G)vecb(Q) + vecb(V)] . (5.6)

Considering the right hand side of (5.6) and using (B.2), (B.4), (B.8),
(B.9) and (5.3) consecutively, yields

[(G ® G)vecb(Q) + vechb (V)]F

© ¢ (G ® G)vech(Q)] + v ec_—b(v)]F

«< [6 ® G) s [vecb(Q)] Pt [vecb (V)]F
<< (és o (_;s) vecb(ag) + vec (VF)
<< (f; ® 6) vec(aF) + vec(VF). . (5.7)

Similarly, considering the left hand side of (5.6) and usiung (B.1l), (B.6)
and (B.9) yields

[-(A ® A)vech(Q)]; 2> (A& A)_ vecb(Qp). (5.8)

Thus, from (5.6)-(5.8)

20
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(A% A)gvec(ag) << (G + G)vec(aF) + vec(VF). (5.9)
It follows from (4.3) that (A ® A)s is the rzxr2 diagonal matrix
= _ s r
(A® A) = block-diag{[D.] }. , (5.10a)
where [D.]_ is the rxr diagonal matrix
s r
2,1, = diagloy; (A; ® 40}, ,. (5.10b)
Define the nxn matrix Z by
(5.11)

A= log (8 @Ay oy i)

Then using (5.10) and (4.5) and operating with vec-l(o) on both sides of
(5.9) yields

A*éF <« c;aF + EFGT + '\iF (5.12)

which is the covariance block norm inequality of ([7, Proposition 4.2].
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An M-Matrix and Majorant Approach to
Robust Stability and Performance Analysis
for Systems with Structured Uncertainty

David C. Hyland and Emmanuel G. Collins, Jr.
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Abstract

This work considers uncertain multi-input multi-output sysems described in the frequency
domain. The theory of nonnegative matrices and M-matrices is used along with majorant bound-
ing techniques to develop robust stability and performance results for two types of uncertainty.
The first type is uncertainty with norm bounded subblocks (i.e., |[Qi;(jw)|ls < di;(jw)). The
second type is uncertainty that has subblocks with known patterns but unknown gains (ie.,
Qi (jw) € {Bi;(jw)Wij(jw) :| Bij(jw) |< Gij(jw)}). For uncertainties of this type a recursive
analysis methodology is developed which yields increasingly nonconservative results. Throughout
this paper performance is measured in terms of the deviations of the outputs from their nominal
values. The results are illustrated by a numerical exampl-. .

I
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1. Imntroduction

A central problem in feedback control is to achieve acceptable performance in the presence
of uncertain plant dynamics and disturbances. This necessitates the development of analysis tools
capable of determining the behavior of a given feedback system in the presence of uncertainty. Thus,

over the past decade considerable attention has been given to the issue of robustness analysis.

In the frequency domain setting initial attention was given to unstructured uncertainty, that is,
norm bounded uncertainty. This focus led to the development of singular value analysis [1-5] which
is particularly useful for systems with unmodeled high frequency dynamics. However, when the
uncertainty has structure, it is well known that singular value analysis can yield very conservative

results.

This conservatism has led to the investigation of analysis tools applicable to systems with
uncertainty which is more structured. References [6-18] present analysis methodologies for a variety
of forms of structured uncertainty. These methodologies generally depend upon one or more of the

following tools:
(i) non-L, (i.e., L or Ly,) matrix norms [7,10]
(i) weighted matrix norms or system transformation [6,7,10,14-16]
(iii) the theory of nonnegative and M-matrices {7,8,10-13]
(iv) mapping theorems [17,18]

A common feature of many of the robustness results to date is that they consider only the
qualitative issue of stability. However, in practice one is also concerned with the gquantitative
issue of performance where performance is measured in terms of the effect of certain signals or
disturbances on specified system variables. Robustness results which do address the performance

problem are found in {15,26-29].

This paper uses the theory of nonnegative matrices and M-matrices along with majorant bound-
ing techniques [24,33] to develop robust stability and performance results for two types of uncer-
tainty. The first type is block-structured uncertainty and consists of uncertainty with norm bounded
blocks ( i.e., ||Qi;(jw)lls < §i;(jw)). The second type is patterned block-structured uncertainty.
Uncertainty sets of this type have some blocks with known patterns but unknown gains (i.e.,

Qij(Jw) € {Bi; (Jw)Wi;(5w) | Bij(jw) IS dis(jw)}).
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The paper is organized as follows. Section 2 presents notation and mathematical preliminaries.
Section 3 states and formulates the general problem under consideration. Section 4 then presents
robustness results for systems with structured uncertainty. It is shown that the robust stability
results are nonconservative if the nominal transfer matrix P(s) is block-diagonal. Next, Section
5 considers systems with highly structured uncertainty and develops a recursive methodology to
obtain increasingly nonconservative robustness results. Section 6 presents an illustrative example. -~

Finally, Section 7 summarizes and discusses the main results.

2. Notation and Preliminaries

In the following notation the matrices and vectors are in general assumed to be complex.

R (R4)

Cc (C4)

Iy

ZH

z;5

Zis

block-diag (2;,...,2ZMm)
Y <LZ

nonnegative matrix

|

p(2)

det(Z)
ll=l2
Omax(Z)
12]ls

Snxn

1S ]}eo

set of (nonnegative) real numbers

(closed right half) complex plane

p X p identity matrix

complex conjugate transpose of matrix Z

(1,7) element of matrix Z

(1, 7) matrix block of partitioned matrix Z or (1,7) element of Z
block-diagonal matrix with listed diagonal blocks

Yi; < z;; for each ¢ and j

matrix with nonnegative elements (Z >> 0 or equivalently

Z € RT*" for some m and n)

absolute value of scalar &

spectral radius of square matrix Z (If Z >> 0, p(Z) is the Perron
root of Z {31,32].)

determinant of square matrix Z

Euclidean norm of vector z ( = zH:z:)
largest singular value of matrix Z
spectral norm of matrix Z ( = am,x(Z)), subordinate to the .1l
Euclidean norm

the space of all rational n-vector functions bounded on the jw-axis
(i.e., |lv(jw)llz < oo for all w).

the space of all rational, stable and proper n x n transfer-function matrices ‘1‘

Hoo norm of S(s) € S™*"( = sup,, Omax[S(jw)])
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Let A, B € C™*" and z € C™ have the partitioned forms

A = (Al =1, (2.1)
B= [BiJ'](:‘.j=1,...,r) (2.2)
2T = [2],...,27) (2.3)
- , -
where A,;, B;; € C™*™ z,€ C™ and Zn.- = n. The block norm matriz [20,31] of A is the r x r
nonnegative matrix =t
- AE [l 4slls] 4 jmr,y: (2.4)
Similarly, the block norm vector of z is the nonnegative vector Z € IR" defined by
2" 2 [lzallas ., Iz (2] (2.5)
{

For convenience block norm matrices and vectors will be referred to simply as “block norms”.

Subsequent analysis will use the following block norm relations [33].

(@d)=a4d, acR (26)
(A+B)<<A+B (2.7)

(AB)<< 4B (2.8) »

(Az) << Az. (2.9) g

Majorants [22] are esse;ltia.lly element-by-element upper bounds for block norms. Precisely,

nonnegative A € IR"*" and # € IR" are majorants respectively of A and z if

A<<A (2.10)
T<< 3 (2.11) ‘

A matrix F € IR?*? is an M-matriz [28-30] if it has nonpositive off-diagonal elements i.e.,
pi; < 0for 1 # j] and positive principal minors. There are many equivalent characterizations of
M-matrices [28-30|. A particularly useful one for the analysis of this paper is that F is an M-matrix
if and only if it has nonpositive off- diagonal elements and a nonnegative inverse (i.e., F~1 >> 0). R

Also, if D € RT*™, then I,, — D is an M- matrix if and only if‘p(D) < 1.
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hand plane (i.e., it is analytic). A linear time invariant system with input v, output y and transfer

representation
y(s) = H(s)v(s) (2.12)

is stable if H(s) is rational, stable and proper (i.e., H(s) € S"*"). This definition of system
stability is equivalent to bounded-input bounded-output stability.

The Hoo-norm of S(s) € S™*"(||S||c) generates a topology in S™*™. Given any set H C S™*"

I it is possible to define a relative topology in H [5]. The set H is arcwise connected if given
“ any two elements Ho(s) and Hy(s) in H, there exists a continuous map M : [0,1] — H, such
that M(0) = Hy(s) and M(1) = Hy(s). In more physical terms, if H is arcwise connected then
it is possible to perturb the system from Hy to H; continuously without abrupt changes in the

properties of the plant. For example, if Hy has a open right half plane zero and H; has a open
i left half plane zero then Hy can be perturbed continously to H; only by having a zero cross the

imaginary axis. That is, for any continuous map M(-) having the properties described above, there

exists a u € (0,1) such that H'(s) = M(u) has a zero on the imaginary axis. The reader is referred

to [5,16] for further discussion of these results.

3. Problem Statement and Formulation

Consider the linear time invariant systems
y(s) = —P(s)Q(s)y(s) + R(s)v(s) (3.1)

y(s) = —Q(s)P(s)y(s) + R(s)v(s). (3.1)

The input v and output y are in €™ and have the partitioned forms
vT = [o],...,07] (3.2)

v =v],...,v7] (3.3)

,
where v;,y; € C™ and En,- = n. The transfer-function matrices P,Q and R are partitioned

=1
conformably with v and y such that

P = [Pij](i i=1,....r) (3.4)

4

An n X n rational transfer-function matrix H(s) is stable if it has no poles in the closed right
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Q = [Qij](i.j:l,.‘.,r) . (35)
R= [Rij](i,j=l,...,r) (36)

where P;;,Q;,, R;; € C™ X" 1t is assumed that P(s) is a known matrix while Q(s) and R(s) are
71 @iy M4

members of the given uncertainty sets Q and R. That is,

Q(s)eQ (3.7)

R(s) €R. (3.8)

Definition 3.1. A system (3.1) or (3.1') is said to be robustly stable if it is stable for each
Q(s) € Q and R(s) € R.

Many uncertain systems can be represented in the form (3.1) or (3.1'). For example, consider
the decentralized control configuration of Figure 3.1 where A(s) is an additive uncertainty repre-
senting uncertain subsystem interconnections. The relationship between § and v can be expressed

as
(12 + (G(s) + A() K (s)]5(5) = [G(s) + Al)] K (s)0(s): (3.9)
Now, (omitting the argument s for convenience) the return difference matrix can be factored as

[In+ (G + A)K] = [I + AK(I. + GK)~'][I. + GK]. (3.10)

Substituting (3.10) into (3.9) and letting

y(s) = [In + G(5)A(5)]§(s) (2.11)
yields

[In + Q(s)P(s)]y(s) = R(s)v(s) (3.12)
where

Q(s) = A(s) (3.13)

P(s) = K(s)[In + G(s)K(s)] ' (3.14)

R(s) = [G(s) + Q(s)] K (s). (3.15)

Notice that equation (3.12) is identical to (3.1’). Also, notice that P(s) is block-diagonal. This
motivates the specialization of the robust stability result of Theorem 4.1 (given in the next section)

to the case in which P(s) is block-diagonal.




An example of a system which is representable by (3.1) is the block-diagonal perturbation
configuration [7,14-15,18] of Figure 3.2 which motivated Doyle to develop the structured singular

value [14]. This configuration corresponds to choosing

P(s) = M(s) (3.16)
Q(s) = A®s) (3.17)
R(s) = P(s) (3.18)

in (3.1).

In what follows only the system (3.1) is considered. However, all results are applicable to the

system (3.1') by making trivial modifications.

Subsequent analysis also assumes that the input v in (3.1) is known and bounded on the
imaginary axis (i.e., v(s) € L3)). It is desired to obtain sufficient (or necessary and sufficient)
conditions for robust stability and to obtain bounds on the performance degradation due to the
uncertainty. Performance here is measured in terms of the magnitude of the deviation of the vector
partitions of y(jw) from their nominal values (i.e., the values of the y;(jw) for Q(s) = Q°%(s) € Q
and R(s) = R°(s) € R). This criterion allows us to look at performance degradation as a function
of frequency. The choice of the nominal transfer-function matrices Q%(s) and R°(s) is elaborated

in subsequent discussion.

Below, it is also assumed that P(s) and each R(s) € R are rational, proper and stable (i.e.,
P(s) € S™*™ and R ¢ S™*"). In addition it is assumed that the uncertainty set Q is a set of n x n

transfer-function matrices with (at least) the following four properties.
P1. Qc s™*",
P2. Q is arcwise connected.
P3. 0€Q.
P4. There exists nonzero Q(s) € Q such that P(s)Q(s) is nonconstant and

det [I, + P(s)Q(s)] #O0forall s€ C.

An example of an uncertainty set satisfying properties P1-P4 is the set of transfer-function ma-

Snxn

trices in whose matrix blocks have norms which satisfy fixed bounds on the jw-axis, (i.e.,

1Qi;(7w)lls £ §ij(jw)). This case is considered in Section 4.
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Since P(s),Q(s) and R(s) are each assumed to be proper and stable, it follows that the system
(3.1) is stable if and only if

det [In + P(s)Q(s)] #0 forallseC,. (3.19)

The nominal transfer matrix Q°(s) is now chosen as
Q°(s) =0. (3.20)

It is not necessary to specify the nominal transfer matrix R°(s). However, in practice it will
generally be chosen to be compatible with Q°(s). For example, if R(s) is given by (3.15), then one
would choose

R°(s) = G(s)K(s). (3.21)

Likewise, if R(s) is given by (3.18), then one would choose

R%(s) = P(s). (3.22)

Let y° denote the output corresponding to the system (3.1) with Q(s) = Q%(s) = 0 and
R(s) = R%(s). Then,

y°(s) = R°(s)v(s). (3.23).

Let e denote the deviation of the output from its nominal value, i.e.,
e(s) £ y(s) — v°(s). (3.24)
Then, subtracting (3.23) from (3.1) shows f;hat e(s) satisfies
[In + P(s)Q(s)]e(s) = z(s) | (3.25)

where
z(s) £ — P(s)Q(s)R°(s)v(s) + [R(s) - R%(s)]v(s). (3.26)

The input z has the partitioned form
2T =z],...,27 (3.27)

where z; € C™.




Definition 3.2. A nonnegative r-vector é(jw) function is said to be a performance bound of a

system (3.1) if for each Q(s) € Q and R(s) € R,

(jw) << é(jw) for all w. (3.28)
The objective of the robust performance analysis is to find a nonconservative performance bound
é(yw).

The following theorem shows that system stability can be determined from behavior on the jw-
axis. The corollary to this theorem relates the objectives of the stability analysis and performance

analysis by showing that the system (3.1) is stable if and only if €(jw) is bounded.

Theorem 3.1. The system (3.1) is robustly stable if and only if for each Q(s) € Q
det [I, + P(jw)Q(s)] #0 for all w. (3.29)
Proof. Define
"2 {[1 + P(s)Q(s)] : Q(s) € Q}. (3.30)

Since for each Q(s) € Q, P(s)Q(s) is stable and proper, each H(s) € H is also stable and proper
(i.e., H € S™*™). Also, the arcwise connectedness of Q implies that H is also arcwise connected.
Using the stability characterization (3.19) it follows that the system (3.1) is stable for each Q(s) € Q
and R(s) € R if and only if for each H(s) € H

det [H(s)] #0  forallse Cy (3.31)

or equivalently, H(s) does not have any left half plane zeros. Now assume that (3.29) is satisfied
and there exists an Ho(s) € H that has a closed right half plane zero. The proof proceeds by
showing that this is a contradiction and thus (3.29) and (3.31) are equivalent.

From property P4 of the set Q, it follows that there exists an H”(s) € H that has a zero in
the open left hand plane. However, since H is arcwise connected there exists an H'(s) € H that
has a zero on the imaginary axis which (since H'(s) has no poles on the imaginary axis) implies

there exists Q'(s) € Q and w’ € IR such that
det [I, + P(jw')Q'(jw")] = 0. (3.32)

This contradicts (3.29) and thus the theorem is proved. O
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Since P(s),Q(s), R(s) and R%(s) are stable and proper transfer matrices or constant matrices,
they are bounded on the jw-axis. Thus, z(s) defined by (3.26) is also bounded on the jw-axis. The

next corollary results from this property of z(s).

Corollary 3.1. The system (3.1) is robustly stable if any only if there exists a nonnegative
n—vector function é(jw) such that for each Q(s) € Q and R(s) € R,

jw) << é(jw) for all w. (3.33)

Proof. Since z(jw) is bounded for all w (3.25) indicates that (3.29) is satisfied if and only if
e(jw) is bounded for all w. O

As mentioned previously, the objectives are not only to determine conditions for robust stability
but also to determine é satisfying (3.33). In the next section this problem is considered for a

particular uncertainty set Q.

4. Uncertainty with Norm Bounded Blocks

This section considers the case in which the uncertainty set Q is given by Q' where
Q' £ {Q(s) e S™*" 1 Q(w) €< wa)} (4.1)

for some nonnegative r x r transfer-function matrix Q(jw). The block-structured uncertainty set Q'
satisfies properties P1-P4 of Section 3 and thus the results of the previous section apply. In fact,
it should be noted that Q’ is not only arcwise connected but is also convex (which is a stronger

condition). This fact is used to facilitate the proof of Theorem 4.1.

Theorem 4.1, the main result of this section, is a multiloop small gain theorem and presents
a sufficient condition for robust stability and a performance bound é. This result is essentially a
frequency domain version of earlier results by Porter, Michel and Lasley [18,19]. If the nominal
matrix P(s) is block-diagonal, the first corollary shows that the robust stability condition of Theo-
rem 4.1 is actually nonconservative (i.e., necessary and sufficient). The results are also interpreted
in the context of systems with block-diagonal uncertainty matrices Q(s) and are shown to yield an

upper bound for the structured singular value.

Theorem 4.1. Suppose Q = Q’. Then, if

p[?(jw)QA(jw)] <1 for all w, (4.2)




the system (3.1) is robustly stable. In this case a performance bound is given by é(~)(jw) where

#)(jw) 2 [1, - Pliw)Q(jw)] " #(w) (43)

and Z(jw) satisfies

T(Hw) €< i(jw). (4.4)

Proof. See Appendix A. O

Now, consider the case in which P(s) is block-diagonal (i.e., P;;(s) = O for ¢ # 7). This
restriction on P(s) can correspond to situations in which an interconnected system has well known
subsystem dynamics and uncertain interconnections. An example of this is the decentralized control
configuration of Figure 3.1. The following corollary shows that the robust stability condition of

Theorem 4.1 is actually a necessary and sufficient condition when P(s) is block-diagonal.

Corollary 4.1. Assume that P(s) is block-diagonal. Then the system (3.1) is robustly stable
for Q = Q' if and only if (4.2) is satisfied.

Proof. See Appendix B. O

The next corollary considers the case in which Q(jw) in (4.1) is given by

Q(jw) = a(jw)l, (4.5)

where

a(jw) 20 for all w. (4.6)

The problem of robust stability in this case is the block-diagonal perturbation problem considered

in [7,14,15,18] which motivated the develoment of the structured singular value.

Corollary 4.2. Assume that § in (4.1) is given by (4.5). Then, if
= 1
Pl PHw)| < —— for all w, 4.7
(Plio)] < 255 (4.7
the system (3.1) is robustly stable.
Proof. The proof follows by substituting (4.6) into (4.2). O

Remark 4.1. Recognize that the performance bound (4.4) remains valid under the assumptions
of Corollaries 4.1 and 4.2.
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Now recall that under the assumption of Corollary 4.2, the “small u theorem” (15] states that
the system (3.1) is robustly stable if and only if

1
P(jw)] < —— for all w 4.8
B [ ( )] a(Gw) (4.8)
where (-) denotes the structured singular value [14,15].
An immediate consequence of the above discussion is then the following corollary.
Corollary 4.3. For wg € IR
#{P(jwo)] < p[P(5wo)]. (4.9)

Remark 4.2. If r = 2 and n; = nz = 1, then as mentioned in [17] it can be shown that

p[P(jwo)] = p[P(jwo)]. (4.10)

Remark 4.3. An alternative proof of Corollary 4.3 is also available [25]. This proof is based
on the characterization of u(-) found in Theorem 1 of {14]. The proof then follows by using the

inequality
p(P(jwo)) < p[P(juwo)] (4.12)

which is presented in Theorem 4 of [20]. (A simpler proof of (4.11) is presented in the Appendix
of [20].)

5. A Recursive Refinement of Robustness Results for Highly Structured Uncertainty

This section considers the robust stability of the system (3.1) for an uncertainty set Q" which
is more structured than the uncertainty set Q' of Section 4. Further discussion requires the intro-

duction of some additional notation and definitions.

Let m be some set of integer pairs
mcC {(i,j):1<i<r, ¢1<j<r} (5.1)

For each (1,7) € m let W;;(jw) be an n; x n; transfer-function matrix. Also, for some r x r
nonnegative transfer-function matrix Q(jw) let
Q"= {Q(s) € Q': for all w and (1,5) € m,
Qi;(jw) = Bi;(Fw)Wi;(5w), | Bis(5w) | §is(5w)/|[Wislla }-

11
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Notice that

Q"cqQ’ (5-3)

If m is nonempty, Q" is said to be an uncertainty set containing patterned block-structured uncer-

tainty.

The set Q" satisfies properties P1-P4 of Section 3 and like Q' is convex. Since Q” C Q'
the robustness results of Theorem 4.1 apply with Q' = Q”. However, (if n is nonempty) the
additional structural information associated with the uncertainty set Q" allows the development
of less conservative results. Below, we develop a recursive methodology to obtain robust stability
conditions and performance bounds. Each stage of the recursion yields robustness results which
can be significantly less conservative than the results of the previous step and are guaranteed to

never be more conservative.

The development of this section begins by showing that the robustness properties of the system
(3.1) can be determined by analyzing any one of a sequence of equations. First, for k € {0,1,2,...}

consider the equation

k-1
(I = (-PQ™)e® = [ T] (1 +(-PQ)™")]= (5.4)

m=0
where we use the convention

1:[ (In+(-PQ)*") &1, (5.5)

m=0

and z is defined by (3.26). Also recognize that

k-1 2* -1
I a4+ (-PQY*™) = > (-PQ)™ fork=1,2,... (5.6)
m=0 m=0

(Note that the argument s is implicit in (5.4)-(5.6)). An important theorem is now presented.

Theorem 5.1. Let k € {0,1,2,...}. Then the system (3.1) is robustly stable for Q = Q" if and
only if for each Q(s) € Q"

det [In ~ (- P(jw)Q(jw))" | #0  for all w. (5.7)

In this case, for each Q(s) € Q" and R(s) € R the error vector e(jw) which solves (3.25) is given
by
e(jw) = ¥ (jw) (5.8)
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where e(¥)(jw) satisfies (5.4) with z(jw) given by (3.26).

Proof. The proof is found in Appendix C and uses Lemma C which is also presented in
Appendix C. O

Now for k € {0,1,2...} and each Q(s) € Q" and R(s) € R define
T®) () = (- P(jw)Q(w)) > (5.9)

k~1
2®(jw) = [ T] (n + T (jw)) ] 2(0) (5.10)

m=0

where z(jw) is given by (3.25). T(*) and z(¥) have the partitioned forms
k
T® = [T 51,000 (5.11)

(T = [(z(lk))r,...,(:$k))r] (5.12)

where T‘-(:) € C™*™ and a:‘(-k) € C™. Now choose r x r T(¥)(jw) and r dimensional %(jw) such

that for each Q(s) € Q” and R(s) € R

;(k)(jw) << £ (jw) for all w. _ (5.14)

Notice that
T+ () = [T (jw))? (5.15)
2(E+1) () = (I + T (jw))z(")(jw). (5.16)

It then follows from (5.19), (5.20) and the block norm inequalities (2.7)-(2.9) that it is always
possible to choose sequences {7'(¥) (jw)}:‘;q and {z(¥ (_7'@.1)}2"___0 such that

T+ (54) = [1‘\'(’”(_1'(.))]2 for all w (5.17)

#0(jw) = (I + PO ()] B (jw)  for all w. (5.18)

However, in general it is possible to choose the sequences {T(")(jw)}:‘;c) and {:i:(")(jw)}:lo such

that
TR () << (PP Gw)]? forallw (5.19)

2+ (jw) << {1 + TP (G0)]eW(Gw)  for all w. (5.20)
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This fact is illustrated by the following example. This example corresponds to considering a system

of the form (3.1) at a fixed frequency wq.

Example 5.1. Suppose
P(jwo) = block-diag{ Py (jwo), P2 (jwo)}

where

Puleo) = |5 o] Bt =[5 3],

W (jwo) = [Wn?ng) W“SJM)]

where
W13 (jwo) = [(1, 8] y Wa(jwo) = [8 (1)] ,
Q(wo)" € {Q(jws) € T*** : Q(jwo) = B(Jwo)W (jwo),| Bliws) |< §(jwo)}

and
=T (jwo) = [T (jwo), zT (jwo)]-

where

1{(1'(4)0) =[1,0], Ig‘(jwo) =[0,1].

Then for each Q(jwo) € Q(wo)"”

Tjuo) = FQljuc) = ~Ao) [PzW'z?(J'wo) PlWlé(ij)}

T ve) = = [PQUn)]” = =fiwo)? | P11 m1Ge0) PP i)
and
) = ation) = [ 210)
= on) = [+ 7O un)) = iso) = [ 22000 | - i) [ Fiprzalien) ]
Choose .L

F)(jwo) = §(jwo) [ : },]
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This is the smallest possible choice of 7(°)(jwo) in the sense that there exists Q(jwo) € Q(wo)”
such that T(o) (Jwo) = f‘(°)(jwo). Noticing that W3 P2(jwo) = Wi Pi(jwe) = 0 it is possible to
choose
T (jwo) = 0 << [F(jwo)] = §(jwo)* 11
Now choose
s ]
This is obviously the smallest possible choice of £(°)(jwp) since Z(®)(jwo) = £(% (jws). Now notice

that Pi\W;3z1(jwo) = PaW3123(jwo) = 0. Thus it is possible to choose
a . u . a . u . ay - 1
£ (jwg) = 29 (jwo) << (I + T(o))(on)z(o)(on) = (1 + §(jwo)) [l] .0
The main results of this section are now presented below in Thecrem 5.2 and Corollary 5.1.

Theorem 5.2 provides a sufficient condition for robust stability while Corollary 5.1 provides the

foundation of a recursive methodology for obtaining less conservative bounds.
Theorem 5.2. Suppose Q = Q" and consider any k € {0,1,2,...}. Then, if
P f‘”(jw)] <1 for all w, (5.21)
the system (3.1) is robustly stable. In this case, a performance bound is given by &*)(jw) where

e (jw) & [I, - TM(jw)] 7 ¥ (jw). (5-22)

Proof. The proof of this theorem depends upon Theorem 5.1 and is essentially identical to the
proof of Theorem 4.1 found in Appendix A. O

Corollary 5.1. Suppose Q = Q" and the sequences {f‘(k) (_7'(;))};:‘;0 and {:i:(")(jw)}:‘;o satisfy
(5.19) and (5.20). Then, if for some m € {0,1,2,...}

p[f'("‘) (Jw)] <1 for all w, (5.23)
the system (3.1) is robustly stable. In this case, for any k > m

p[f'(") (Jw)] <1 for all w (5.24)
and é(¥)(jw) defined by (5.22) is a performance bound. In addition

e+ (jw) << e (jw) for all w. (5.25)
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Proof. The inequaiity (5.24) is a direct consequence of (5.21) and (5.19). That é(*)(jw) is a

performance bour ! then follows immediately from Theorem 5.2.
Now é(¥)(jw) satisfies
[fr = TW(jw)] e (juw) = 29 (jw). (5.26)

Premultiplying (5.26) by the invertible matrix [I, + Tk (jw)] and rearranging gives

&8 (jw) = [FO ()] e®) (jw) + (I + 70 (j)] 2 (jw). (5.27)
It then follows from (5.19) and (5.20) that

éF)jw >> T+ (50)e®) (jw) + 205+ (juw). (5.28) -

Thus, there exists © € IR], such that

&8 (jw) = PR (Gu)e® (jw) + 3D (jw) + 6. (5.29)

Next notice that
é(k+1)(jw) - T(k+1)(jw)é(k+l)(jw) + i(k+l) (JW) . (530)
Subtracting (5.30) from (5.29) and rearranging yields
[6¥)(jw) - 549 ()] = [1, - T4+ (5] e, (5.31)
It follows from (5.24) that [I, — ’f’“““)(jw)] is an M-matrix and thus
[ - T®+ G0 220 for all w. (5.32)
The inequality (5.25) follows from (5.21) and (5.32). O
Remark 5.1. If (5.23) is satisfied, then since the sequence { ek)( jw)}f:m is bounded below

by the zero vector and is monotonically nonincreasing (i.e., it satisfies (5.25)), it is guaranteed to

converge.

Remark 5.2. Recognize that the calculation of successive members of the sequences

{ff‘(")(jw)}:lo and {:E(")(jw)}:;o is increasingly complex.

Remark 5.3. It is always possible to choose 7(%)(jw) and (% (jw) such that
éOGw) << é)Gw)  for all w (5.33)
where é(~)(jw) is the bound defined by (4.4).

Corollary 5.1 is the basis of the following recursive algorithm for the analysis of robust stability -

and performance.

16




Recursive Algorithm for Robustness Analysis

This algorithm assumes that for scme p € {0,1,2...} the sequence {T(*)(jw)} satisfies (5.21)

for k > p.

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

6.

Initialize m = 0.
Determine if 7'(™)(jw) satisfies (5.28).

If (™) (jw) satisfies (5.28) go to Step 4. If T(™)(jw) does not satisfy (5.28) and m < p, then
let m — m+ 1 and go to Step 2. If 7(™)(jw) does not satisfy (5.28) and m = p then stability

cannot be guaranteed and the algorithm stops.
Let k = m.

Compute the performance bound é(*)(jw). If the bound is close (or equal) to the limit of the

sequence {é(¥)(jw)}

:°=m or is satisfactory in some other sense considered by the analyst, then
stop. Otherwise go to Step 6.

Let k «— k+ 1 and go to Step 5.

An Illustrative Example

Consider the configuration of Figure 6.1 which describes two oscillators with uncertain coupling.

This system can be described by (3.1) with

- y(s) = [yi (), w3 (s)] (6.1)
vi = [vi(s), v7(9)] (6.2)
R(s) = P(s) = [P1(§8) P,(zs)] (6.3)
Q(s) = [Qz(x)(S) Qlé(s ] , (6.4)
Notice also that
1 s+v;
P = e | T oSl (€:)
The nominal output y° (corresponding to Q°(s) = 0) is given by
y°(s) = P(s)v(s). (6.6)
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In addition, the error vector
e(s) £ y(s) - y°(s)
is given by '
[Z4 + P(s)Q(s)] e(s) = =(s)
where

z(s) = —P(s)Q(s)P(s)v(s)

or equivalently

2(s) = [”1(’)] __ [Pl(s)Qu(S)Pz(s)ug(s)

z2(8) | — P;(3)Q21(8) Py(s)v1(s)
Now let
Arey— | 0 dra(w)
Qlw) = [ﬁzx(w) Y ]
where

() =o(1- o=tes
A

R _ s
qzl(W) =0 m .

Also, let Q be given by Q' where

Qr = {Q(s) € $*** : Q(jw) << Q(jw)}.

Subsequent results consider the case

ﬂA =ns = 5.0

vi (jw) = v (jw) = [0 1].
Standard singular value analysis assures stability if
7(P(jw))L(w) < 1 for all w

where
L(w) = max {(in(w): 621(“’)}'
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For the case under consideration the condition (6.19) is satisfied only for
o < 0.0051. (6.21)

However, the stability condition of Corollary 4.1 shows that the system is actually stable if and
only if

o < 0.428. , (6.22)
comparing (6.21) and (6.22) demonstrates the conservatism sometimes inherent in singular value

analysis.

Figure 6.2 shows a plot of ||y{(jw)]||2 and ||y3(jw)||z versus w. For o0 = 0.3 Figures 6.3 and 6.4

show plots of ég—)(jw) and ég—)(jw) respectively versus w, computed using (4.3) with

3T (jw) = [2] (w), 27 (jw)) (6-23)

where
£1(jw) = | Py (Gw)lls d12(w)l| P2 (jw)vs|ls - (629
£(jw) = ||P2(§w)l|s G2 (W) Py (Gw)es]la. (6.25)

The latter plots shows the possible performance degradation in the outputs y; and y; due to the

system uncertainty.

Now assume that the patterns of the subblocks of Q(s) are known in addition to bounds on

the norms of the subblocks. In particular let W;, and W3, be the constant matrices

1{1 g
== . 2
Wia 2 [_J 1] (6.26)
_ 111 =y )
Wa = 3 [j ! ] (6.27)
and notice that
Wizlle = [[Walle = 1. (6.28)

Now, let Q be given by Q';,; where
Q;; = {Q(s) € Q% : for all w,Q12(jw) = Br2(w)Wi2,
Q21 (jw) = o1 (w)Wa1,| Bra(w) IS dr2(w), ] B21(w) IS G2 (w)},
and §2(w) and §p1(w) are defined by (6.12) and (6.13).

(6.29)
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Now, notice that

T (jw) = -P(jw)Q(jw) = - [Pzgzx PlQ“] (),
TM () = (- P(jw)Q(jw))z = [P1Q120P2Q21 P2Q210P1Q12J (),

2% (jw) = z(jw),

#0) = (14 TOGul]te) = 2o) + | pZuFu e ] )

Choose f‘(°)(jw),f‘(l)(jw),5(0)(jw), (1 (jw) as

- 0 f(o)('w)
T(°)(jw) = [‘_ 12U ]
QGw) o
where
9 (5w) = §12 ()| P, W12 5 (w)
89 (Gw) = da1(w)|PsWas || s (w);

N1, .
- . t w 0
() = [ B (()J ) fglz)(jw)]

"where

5(111) (4w) = d12§21(w)|| PiW12 Py W3y || s (fw)
t‘%’ (Jw) = G21d12(w)|| PaWa1 PyW 1, ||s (jw);

0= {5
where

£ (jw) = §12(w) | P W12 Pavallz (jw)
20 (jw) = Ga1 () || PaWay Pyos ||z (jw);
) W

z(l)(Jw) [ 1)(])

(jw)
where

31" () = £{ (jw) + da1G12 ()| PaW31 Py W3 Py ()
" (jw) = 28 (jw) + di2d21()|| Py Q12 W21 Pyvi |2 (jw).
For k = 0, the robust stability condition of Theorem 5.2 shows that the system is stable for
o < 0470
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3
which describes a larger stability region than (6.22). For k = 1, the robust stability condition of
. Theorem 5.2 shows that the system is stable for
0 <15x10° (6.46)
which is a much less conservative result! Since for this example for k € {2,3, ...} one must choose
A(k) (. - . 2(k-1)
T (jw) >> [TW(jw)] for all w,
(6.46) describes the largest stability region which can be obtained by the recursive algorithm of

Section 5.

Figure 6.3 shows plots of égo)(jw) and égl).(jw) vs. w, computed using (5.27) with k = 0.
Likewise, Figure 6.4 shows plots of é(,o) (jw) and égl)(jw) vs. w, computed using (5.27) with k = 1.
As insured by the theory '

dVGw) < &V(w) " forallw (6.47)
eV (jw) < dGw)  for all w. (6.48)
gﬁ
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Summary

This paper has used the theory of nonnegative and M-matrices to develop robust stability and
performance results for two types of uncertainty characterizations. Performance was measured in
terms of the deviations of the system outputs from their nominal values. For uncertainty with norm
bounded subblocks the development led to a frequency dependent multi-loop small gain theorem.
The stability result was shown to be necessary and sufficient when the nominal transfer matrix
P(s) is block-diagonal. For uncertainty that has subblocks with known patterns the developments

led to a recursive methodology which is guaranteed to yield increasingly nonconservative results.

The results were illustrated by considering two oscillators with uncertain couplings. The fre-
quency dependent multi-loop small gain theorem was shown to yield much less conservative results
than standard singular value analysis. However, for a given case in which the patterns of the un-
certain coupling blocks were assumed to be known the recursive analysis methodology yielded a
stability region over 5 orders of magnitude greater than that obtained by using the multiloop small
gain theorem. The recursive methodology also yielded better (i.e., smaller) bounds on the output

perturbations, a result guaranteed by the theory.

Acknowledgements. We wish to thank Jill Strachla for the excellent typing of the original
manuscript, Allen Daubendiek for performing the numerical computations, Dennis Bernstein for

several helpful comments, and Teresa Rhodes for assisting in the preparation of the figures.
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Appendix A

Proof of Theorem 4.1. First recognize that since Q = Q’,
(PQ) < PQ  foralw. (A1)

(Here the block norm inequality (2.8) has been used.) Now assume that the system (3.1) is robustly
stable for some Q € Q. Then the corresponding output perturbation eq is bounded on the
imaginary axis and satisfies

eq =PQeq+z  forall w. (A2)

It follows by using (A.1), (4.4) and the block norm inequalities (2.8) and (2.9) that
%q <<PQeq +4 for all w - (A.3)

or equivalently

(I, -PQ)eg <<t  forallw. (A.4)

If p(PQ) < 1 (ie., I, — PQ is an M-matrix) for all w, then (I, — PQ)~! € R}*" for all w.
Premultiplying (A.4) by (I, — PQ)~?! then gives

ol

Q << é for all w (AS)

where ¢ is the solution of

é¢=(I. - PQ) 'z (A.6)

Next assume that (I, — PQ) is an M-matrix for all w and that the system (3.1) is not robustly
stable. Recognize that for w, € IR |det[I, + P(jw,)Q(jw,)]| is a continuous function of Q. Define

Q)2 igfldet(l,- + PQ)|. (A.7)

The function f(Q) is also continuous in Q. In addition, the system (3.1) is stable for Q € Q' if and
only if f(Q) > 0. Now there always exist a neighborhood in Q' of Q = 0 such that for each Q in
the neighborhood, f(Q) > 0. Since Q' is convex, there exist Q, € Q' such that f(uQ,) > 0 for
p € [0,1) and f(Q,) = 0. It follows that for u € [0,1)

Cug, << & for all w (A.8)
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and there exists w, € IR such that

lim | det (I, + uP(jw.)Q(iws)]

The limit (A.9) implies that
T leyq, (o) = o0

which implies there exists u, € [0,1) such that

Enaq. (Fwo)ll 2 1|E(iw,)ll-

This contradicts (A.8) and ends the proof. O
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Appendix B

Proof of Corollary 4.1. The sufficiency of (4.2) for robust stability is guaranteed by Theorem

4.1. So assume that for some wp € IR
p[ P(jwo)] = a > 1. (B.1)
It will be shown that there exist Q(s) € Q' such that
p[P(juo) Qo)) = 1. (B.2)
First recognize that since (B.2) implies that
det [I — P(jwo)@(jwo)] =0, (B.3)

it also implies that the system (3.1) is unstable for Q(s) = Q(s).

Now let
P = P(jwo) (B.4)
1 = Q(jwo) (B.5)
N={0ecC™™:0<<0). (B.6)

Here it is assumed that each 2 € f1 has the partitioned form
0 = [Q4;](,5=1,....r) (B.7)
where ;; € C™*"/. Since P(s) is block-diagonal,
P = block-diag{”?,..., 7} . (B.8)
where P; € C™*™. Also, in the new notation (B.2) is equivalent to

o[ P = a. (B.9)

Now for each (1 € (1 there exist a @(s) € Q such that Q(jwo) = . Thus, it suffices to complete
the proof by showing that there exist f2 € {1 such that

p(PO) =1. (B.10)
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For each 11 € N1, P(1 is given by

PO = [(Pn)‘i].',j=1,...,r) (B.11)
where
(P€1)ij = Piflij. (B.12)
Let the singular value decompositions of the diagonal blocks of P be given by
Pi=EX;FH, i=1,...,r (B.13)
where
(Z)11 = |12l (B.14)
Now choose (1 such that its block partitions have the singular value decompositions
;= FAGE], ij=1,...,r (B.15)
where
(At'j)ll = ﬁll- (B16)
Clearly, 1 € 1 and
=1 (B.17)
In addition,
(PO)i; = BZAGEH, d5=1,...,r (B.18)
which implies
(P81) = P (B.19) q
Next, let
1
= ;Q. (B.20)
Recognize that {2 € {1 and the block partitions of P2 have the singular value decompositions ﬁ
(Pn)‘-j = El'At'J'E;” ‘1.7' =1,...,r (B21)
where -
(A,'J')u = ?uﬁ,‘j. (B.22)
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It follows that

(PR)=P0= i‘ir‘z. . (B.23)

It is easily seen from (B.9) and (B.23) that

p(PR) =1 (B.24)
Define the unitary matrix U € C**" by
U = block-diag{Ey, ..., E,} (B.25)
and let W be given by
w=UH(Pa)U. (B.26)

Note that W is an n X n ncnnegative matrix and has the partitioned form

W = [4ij]5=1,..00)- (B.27)
In addition,
W=pn (B.28)
and thus
p(W) =1. (B.29)

Let u € IR, be the eigenvector of W corresponding to the Perron root (p(W) = 1). Then,

Wu = u. (B.30)
Now define u € IR]} by
pT = [ul,.., 47 (B.31)
where u; € IRY' is given by
T =[u1 0...0]. (B.32)
(Here u; is the ith element of u). Then,
Wu=p. (B.33)

To see this, recall that W is given by (B.27) and notice that:
(l) Ifn; < nj,
A5 = [43; 0] (B.34)
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where A, € IR} ™™ is diagonal and

(A% =W

(i) If n; > n;,
A9.
4i; = [ 6’]
where A9; € IR}/ *™ is diagonal and

(43)11 = Ws;.

It follows from (B.26) and (B.33) that

p(P) = p(W) =1.

Thus, the corollary is proved. OJ
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Appendix C

This Appendix presents and proves Lemma C and then presents a proof of Theorem 5.1.

Lemma C. Consider any k € {1,2,3...,}. Then, the system (3.1) is robustly stable for Q = Q"
if and only if for each Q(s) € Q"

p[(P(jw)Q(jw))"] <1 foralw. (C.1)

Proof. Suppose (C.1) holds for each Q(s) € Q". Then
p[P(iw)Q(iw)] < 1 for all w (C.2)

which implies that
det [I + P(jw)Q(jw)] # 0 for all w. (C.3)

Theorem 3.1 then guarantees that the system is robustly stable.

Now suppose that for some w € IR and Q(s) € Q"
. . k k
o[(PUw)QGW)"| = a* > 1. (C4)
This implies that for some 8 € IR an eigenvalue of P(jw)Q(jw) is given by .
A[P(jw)Q(jw)] = aexp(6) (C.5)

where a > 1.

Next define
G(s) = - exp(-0)Q(s). - ()

Clearly, @(s) € Q" and there exist an eigenvalue of P(j5)Q(jw) given by
A[P(jw)Q(jw)] = -1. (c.7)

Thus,
det [I + P(jw)Q(jw)] = 0 (c.8)
and by Theorem 3.1 the system is not robustly stable. O
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Proof of Theorem 5.1. First it is shown that for each Q(s) € Q"

det [I, - (- P(jw)Q(jw))"] £0  forallw (C.9)
if an only if for each Q(s) € Q"
. .3
p[(P(Jw)Q(Jw)) ] <1 for all w (C.10)
which by Lemma C is a necessary and sufficient condition for robust stability.

. It is obvious that if (C.10) is satisfied for each Q(s) € Q", then (C.9) is satisfied for each
Q(s) € Q". So assume that there exist Q%(s) € Q" and wo € IR such that

P[(P(J'wo)Qo(jwo))z.] =az2l (C.11)

]
Then for some § € IR an eigenvalue of (P(jwo)Q°(juo))’ is given by

)\ [(P(jwo)q°(jwo))"] = aexp(h). (C.12)
Now, let
3(s) = (-1)* = exp(~0)Q(s). (C.13)
Clearly, Q(s) € Q and there exist an eigenvalue of (P(jwo)é(jwo)) 2 given by
A[(Pwo)@liwn) ™) = ()™ (C.14)
which implies
det [ — (= P(jwo)@(jwo))” ] = 0. (C.15)

The proof is completed by showing that if the system is robustly stable, then for each Q(s) € Q
and R(s) € R

e(jw) = e®(w). (C.16)

So assume that the system (3.1) is robustly stable and consider Q(s) € Q" and R(s) € R. Then

e(jw) is the unique solution
[In + P(jw)Q(jw)] e(jw) = z(sw) (C.17)
where z(jw) is obtained from (3.26). Also, let

k-1

0q(jw) = I (I + (- PGw)a(w)™") (c18)

m=0
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To(jw) = 8q(jw)[ - In + P(jw)Q(jw)]. (C.19)

It is easily shown by induction that
Pq(w) = In ~ (- P(j)Q(w)) " (C.20)
Since the system is robustly stable, (C.9) insures that
det [@g(jw)] #0 for all w. (C.21)
Then, premultiplying (C.18) by 6g(jw) and using (C.17) by ©q(jw) and using (C.19) shows that
Tq(jw)e(jw) = Bq(jw)z(jw). (C.22)

Finally, using (C.18) and (C.19) and comparing (C.22) and (5.8) shows that (C.16) holds. O
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Abstract
fo-t i 3313

Six methods for design of reduced-order
compensation are cempared using an example problem
given by Enns. The methods considered comprise
five LQG reduction techniques, reviewed in a
recent paper by Liu and Anderson, and the OQptimal
Projection theory as implemented via a simple
homotopy solution algoritha. Design results
obtained by the differenmt methods for forty-two
different design cases are compared with respect
to closed-loop stability and transient response
characteristics. Of the LQG-reduction procedures
two are found to offer distinctly superior
performance. However, only the Optimal Projectiom
method provided stable designs in all cases.
Further details sre given on the perfommance of
the numerical algoritha for solving the optimal
projection equations and the corresponding design
results.

1., Intreduction

The design of reduced-order dynamic
controllers for high—order systems is of
congiderable importance for applications involving
large spacecraft and flexible flight systems.
Hence it is mot surprising that extensive reséarch
has been devoted to this ares. A recent paper by
Liu and Anderson [1] subjected five reduced-order
controller design methods to both theoretical and
pumerical comparison. The computational
comparison was based upon an example problem
considered by Eans [2]). The five methods compared
in {1] are:

1. Method of Enns [2]: This method is s
frequency-weighted, balanced realization
technique applicable to either zmodel or
controller reduction

2. Method of Glover [3]: This method
utilizes the theory of Rankel nom
optional approximation for controller
reduction

3. Davis and Skelton {4]: Thic is s
modification of compensator reduction vis
balancing which covers the case of
ungtable controllers

#This research was supported in part by the Air
Force Office Of Scientific Research, contrect
AFOSR F49620-84~C-0038.

*=Technical Staff, Control Systems Engineering
Group

7Le:der. Control Systems Engineering Group

4. Yousuff and Skelton [5j: This iz a
further wodification of balancing for
handling stable or unstable controllers

S. Liu and Anderson (1]: In plaece of usging
s balanced spproximation of the
compensator transfer function directly,
this method approximates the coaponent
parts of s fractionsl representation of
the compensator.

All of the above methods proceed by first
obtaining the full-order LQG compensator design
for a high-order state—space model and then
reducing the dimension of this LQG compensator.

The present paper cocplements the results of
Liu and Anderson by giving a numerical comparison
(again uging Enns' exsmple) of methods 1-5 with a
sixth method:

6. Optimal Projection (OP) equatioas (6]:
Reduced-order compensator design by
direct solution of the necesaary
conditions for quadrstically optisal
fixed—-order dynamic compensation.

Method (6), like methods (1-5), has been
shown to have intimste connections with bslancing
ideas [7]. Moreover, the first step in one
iterative mathod for solutiom of the OP equations
is almost identical to method (4). Metbod (€)
differs from the other methods, however in that it
does not reduce the order of s previously obtained
LQG design but rather directly characterizes the
quadratically optimal compensator of a given
fixed-order. The OP equstions constitute four
coupled modifiad Riccati and Lyspunov equations
wvherein the steps of regulator design, observer
design and order reduction are completely and
ingeparably intermingled.

The organization of this paper is as follows.
In gection 2, we state the problem considered and
review the OP design equstions. Section 3 gives
the camputational slgorithm used herein for OP
design synthesis. Finally, section & sets forth
the example problem of Enns aud compares the
results of all six methods obtained for this

example.

2. Problem Statement and Review of
OF Desipn Equations

Here we consider the linear, finite-
dimengional, time—invariant system:

X = Ax + By ¢+ wyd x € RN.
(1)
P
y = Cx + vy y € R




wvhere x is the plant state, A is the plant
dynamsics matrix and B and C are control input and

sensor output matrices, respectively. vy is a

white disturbance noise with intensity matrix

.20 and v, is observation noise with

nounsingular intensity Vz > 0.

The reduced-order cosmpensation problem
congists in designing & constant gain dynasaic
compensator of order Nc < N:

uert

N
=49 +Fy; qeR©

u = -Kq,
(2)

Obviousgly, the heart of the design problem is the
selection of the constant matrices K, F and Ac.

Methods 1-6 all associate with the closed-
loop system (1,2) a steady-state quadratic
performance index, J:

I8 lim It
1"%

t1~to—>.

t
-5 . .
Jﬁjdtsrxalxn;nzu] (3)

t

[+

> 0, R, >0
R 2 2

Methods 1-5 first design an LQG compensator
(select K, F, Ac to minimize J.) and then reduce

the order of the resulting N state compensator.
Thus, in methods 1-5, the quadratic performance
(3) iz brought into play in the initial LQG design
step, but a variety of balancing and Hankel nomm
approximstion ideas are utilized for the
subsequent compensator-order reduction step. In
contrast, method 6 selects, K, F, Ac by addressing

the quadratically optimal, fixed-order
compensation problem i.e., for N, fixed (and < N),

choose K, F, Ac to minimize J.. The OP desgign

methodology proceeds by solving the first-order
necessary conditions for this optimization problem
uaing the new forms for the necessary conditions
given in {6]. The basic OP design equations
reduce to four modified Lyapunov and Riccati
equations all coupled by a projection of rank Nc'

In general these design equations produce
compensstors that cannot be obtained by reduction
of an LQG compensator [7].

Methods 1-5 have been reviewed extensively in
[1-5], snd will not be discussed in detail. Here
ve shall merely review the OP design equations to
the extent needed to illustrate the solution
algorithm used for this study.

To do this, a few preliminary results and
notational conventions must be givem. First, we
have Lemms 1, (7]:

Lemma 1. Suppose Q GRN‘N and P¢€ RN‘N are

nonnegative definite and rank (Q = rank (P) =

rank (QP). Then the product QP is semisimple (all
Jordan blocks are of order unity) with real, non-
negative eigenvalues. Moreover, there exists a

nonsingular W[E).P] such that:

2

¥ 1(Q.PIQP¥(Q,P] = A (4a)

¥ (Q.PIP¥IQ,P] =A (4b)

v 1Pl TIQ.Pl = A (4c)
wvhere

A = diag (Ak} - ($)

k=1...N

is the positive diagonel mstrix of the square

roots of the eigenvalues of QP.

" When for a given pair Q and P, a ¥(Q,P]

exists such that (4) hold, Q and P are said to be
contragrediently disgonalizable snd balanced [9]

and ¥{Q,P] constitutes s simultaneous

contrasgradient transformstion. Determination of
such a transformation is the fundamental

mathematical operation of balancing.

Furthermore, it is clear that the quantities:

n (. & a2y (o,

{6)
B(k) . 1; a=n=k :
&a 0; otherwise
form s set of mutuslly disjoint unit rank
projections i.e.:
ﬂk [Q.Pluj q,p] = l'lk [Q.Plékj: (7)
Thus the sum of r distinct ﬁk'l is itself a
projection of rank r. Alsc QP can be
alternatively expressed as:
an & as 9
QP = 2 m, [QPlA, (8)
k=1

By virtue of (8) and the usage in {10], ve tern
Hk[QP] the eigen-projection of QP associsted with

the kth eigenvalue.

The sabove results and conventions, together
vith the notations:

2 = BR;IBT (98)

T = cvyle (9v)




T - In -7 (9¢)

allow us to state the main result [6-8] upon which

the OP reduced-order compensator design method is
based:

Theorem 1. Consider the quadratically
optimal, fixed-order compensation problem with
Nc < N fixed.

Let nonnegative definite Q, P, Q, P ERN‘N be
determined as solutions to the following
equations:

T s S,.T
0=AQ+QA +V, -QXQ+ rQlar {10a)

T T

0=AP¢PA+P1—PEP+TPZPT (10b)

0= (A-XP)Q + A-TPT + ¥ - rQFer  (100)

0= (A-Q5) TP + P(A-QT) + TP - TTRERT  (10d)

N
¢ an
T=3n (er) ' (10e)
K=1
chN
Then with I', G € R given by:

= (1, 0% '(Q.P]
c

(11)
G = (1, 0N [Q.P)
(-4
the gains:
K = R.'BTecT
2
F = rqc"'v;1 (12)

A, = TAQE-ER)6"

determine an extremal of the performance index J.

As hsg been remarked in (8], the value of the
performance index is unchanged by any
transformation of the compensator state bssis - in

other words, for any anonsingular S € N:N:

1

J(K.EA) = J(KS,S r.s"Acs) (13)

Furtbermore, when Nc = N, Tis a rank N

projection on R“ by virtue of (10e), Hence T = IN

and 7| = 0 and equations (10s),(10b) become
uncoupled Riccati equations for determination of Q

and P. Also T and G become W-lla.;] and era.;].

Finally, setting § = ﬁ.l and uging (13) and (12),
extremalizing gains sre given by:

K = R;lBTP

F = QCTV;I (14)
[ ex
Ac =A-QL - TP

with Q and P given as solutions to the independent
Riccati equations, (10s,10b), with 7] = O. Hence
when “c = N, the design equatrions (10), (11) and

(12) immedistely reduce to the LQG design for &
full-order compensator.

However for N < N, equations (10) sre first-

order necessary conditions and generslly possess
aultiple solutions corresponding to multiple
extremals that can exist. This matter was
explored in [11] relative to the related
quadratically optimal model reduction problem.
Basically, equation (10e) tells us that the rank
Nc projection, T, which defines the geometry of

the fixed-order compensator, is the sum of Nc out

of N eigenprojections of QP. BHowever, the
necessary conditions do not tell us which Nc out

of N eigenprojections sre to be selected to secure
a global gininum of J. Indeed for any possible
selection of Nc eigenprojections out of N,

equations (10) may possess a solution
corresponding to a local axtremal, By virtue of
(10e) and the notational conventions of (4) and
(8), the selection of “c eigenprojections is

defined (generically) by the manner in which the
eigenvalues, Ak' are ordered. Recently, Richter

[12] has spplied topological degree theory to
iovestigste the possible solution branches and the
character of the associated extrems and has
devised a homotopy solution slgorithm which
selects the A-ordering which homotopically
converges to the global minimum.

For the example congidered in this paper, we
adopt the ordering convention:

Ap2Ap2 e 2Ay (15)

in constructing ¥{Q,Pi. (15) together with (10e)
imply that 7 is taken to be the sum of the Nc

eigenprojections corresponding to the “c largest

eigenvalues of QP. Generically, this choice leads
to an unequivocal choice of one solution branch of
(10) corresponding to & particular extremal.

Thus, the OP design metkod ipvestigated here
consists in solving (10) with comvention (15) and
then evaluating the gaing according to (12). We
apply a simple homotopy solution slgorithm,
described in the next section, to the example
problem of Eong specified in Section 4 and coupare
results with methods 1-5, A more advanced snd
efficient homotopy algorithm is given in [12].

T

S b

A




3. An Algoritha for Solution of the
OP Design Equations

As stated, the OP design method is to solve

(10) (with stipulstion (15)) for P, Q, P, Q, and
then evaluate the gains using (11), (12). A
logically distinct issue is precisely how
equations (10) are to be solved. Here we present
- ao algoritha that has been used for some time and
requires only a standard LQG software package for
its implementation. For convenience this saze
algorithm vas employed to obtain the numerical
results for method 6§ presented in the next
section.

The basic motivation of this algorithm is the
observation that the four main equations (10a)-
(10d) are coupled only via the terms imvolving 7|
on the right hand sides. 1f these T, terms were
deleted, then all five equations can be solved
sequentially - moreover (10a),(10b) reduce to
ordinary Riccati equations and (10a), (10b) are
Lyspunov equations. Likewise under conditions in
which QXQ and PLP are "small" relative to the
remaining terms (e.g., sufficiently small state-
weighting and disturbance noise intengity and/or
sufficiently large control weighting and
observation noise intensity) the T; terms are
typically found to have little effect. In this
situation the artiface of fixing an initial Tye
and then solving (10) as ordinary Riccati and
Lyspuncv equations is likely to give a reasonable
spproximation to the true solution,

Since only the 7, terms on the right of (10a-
10d) occasion most of the difficulries, it is
necessary to somehow bring these terms into play
gradually. There are two principal ways to do
this. The first is an iterstive relaxation
approach, i.e.. fix 7|, solve (10a)-(10d)
sequantially, then update T using (10e) and repest
until convergence, in some sense, is achieved.
The second method is s homotopy approsch, i.s.,
wultiply the T) terms by a scalar parameter,

a € [0,1], thea starting with a = 0 and gradually
incrementing a, solve (10) repestedly until a= 1,

The algorithm used here consists of two
iterative loops. The inner loop uses the
relaxation approsch and is embedded within an
outer locp which implements the simple homotopy
approach.

The inner loop follows the earlier
computational gcheme discussed in [7] and is
illustrated in Figure 1. Note that the parameter
a € (0,1] multiplies the T terms but is held fixed
within the inner loop and is only incremented on
the outer loop. As Figure 1 shows, one first
fixes T equal to the previous iterste (or set

T = I.N vher starting) and them solves (10a)-
(10d). Once new iterates for ¢, P, Q, P are
obtained, T is updated by determining the

balancing transformation ¥(Q,P]. To enbance
convergence of the modified Riccati equations, the
updated T is taken to be the weighted sum of all N
sigenprojections - the first “c eigenprojections

are given unity weight while the rth (z > "c)

Figure 1: Inner Loop of OP Solution Algoritha
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eigenprojection is weighted by Ar/AN < 1. As
c
convergence proceeds, l\"_ll\M approaches zero for
c

all r > Nc and the numerical rank of T approachs
Nc. The indicated convergence check tests the
relative excess of the numerical rank of T over N,

and terminates the inner loop iteraticns when this
"rank excess™ falls below tolerance €. In these
studies € = 0.1 is used. The inner locp is
temminated when either thig tolerance is achieved
or when the prescribed number of iteraticnos is
exceeded,

When the convergence criterion is satisfied,
the gains, K, F, A are computed using (11) and

(12) and the steady-state performance, J, is
evaluated. Performance evalustion icvokes no
assumptions regarding the convergence and
optimality of the solutions to (10).
Specifically, the values of K, F, Ac resulting

from application of (12) are accepted as they
stand and are used to construct the system
matrices of the augmented system wvith state vector

P L [xT.qT] . Next the NeN, x M+N_ Lyspunov




equation for the second moment matrix of the
augnented, closed-loop system is solved, Finally,
J is evaluated as & linear function of various
sub-blocks of the sugmented system second moment
matTix.

The outer loop, depicted in Figure 2,
implements the homotopy spproach by incrementing a
and contrxolling the increment step size. Only at
the start is the inner loop initislized by r = IN'

Otherwise, wvhen « is incremented, the inmer loop

is initislized using P, Q, P, Q, and T as obtained
with the previous value of @. « is taken to be O
at the start and is subsequently incremented by A.
The default value of A is 0.1 although other
desired values may be input, However, whenever
the inner loop is terminated withour achieving the
convergence tolerance €, the homotopy parameter
increment, A, is halved. This provides simple
control over the homotopy step size. The entire
algoritha terminates when & = 1.0. Alternatively,
at the user's option, the algorithm can be
termminated vhen the change of the performance
index, J, over two successive outer loop
iterations is sufficiently small - thus indicating
acceptable couvergence with respect to quadratic
performance.

< START, ra I, aw B)
1

DINER LOOP, Pigure 1
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Pigure 2: Outer (Homotopy) Loop of OP Solution Algoritha

4. A Design Example and Comparison of Results

We use the example problem given by Enns' (2]
to compare methods 1~6. Results on this example
obtained by use of methods 1-5 are discussed in
{1]. Here, ve eugment these results by
considering method 6 and undertake an overall
comparison.

The plant to be controlled in this example is
a four-disk system and is linear, time-invariaat,
SI150, neutrally stable (with a double pole at the
origin) and non-minimum phsse and of eighth order.
Numerical vslues of the satrices A, B, C, nl. llz,

vz. Vz defining this problem sre given in Table 1.

- -
-0.161 1 0 0 [} ] [} [
-6.004 0 1 [ 0 ° o 0
-0.5822 [ 0 1 [ 0 ] ]
-9.985 ¢ 0 [ 1 [ o 4
As
-0.4073 0 ] [ 0 1 [ [
=3.9682 0 [ 0 -] [ 1 [
] [} [ "] [ [} [\ 1
0 [ [ ] [} [} 0 ]

L (0. 0, 0.0064, .00235, 0.0713, 1.0002, 0.1045, 0.9955]
¢ = (3 0.0, 0,0, 0,0, 0]

R = (1.0 1o‘°)u’n; 8= [0, 0, O, 0, 0.55, 11, 1.32, 18.0]
1

lzll

T
v, = q88 (g  (0.03, 2000.0])

Vzll

Table 1: Date Matrices for the Exanple Probles of Rans [2)

For each of the methods 1-6, controllers of
different reduced orders (from seventh to second
order) were obtained for seven different values of
the disturbance noise intensity parameter, LY

9, = 0.01, 0.1, 1.0, 10, 100, 1000, 2000

Thus each method was used to obtain results on 42
different design cases.

Each of the six methods was originally
deviged according to & wide variety of different
criterion for adequate performance of a reduced-
order compensator design. Despite this wide
disparity among the different aima and motivations
of the several methods thers are at least three
criteris that msy be reasonably applied to judge
the success of s reduced-order design:

Al A
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1. Closed-loop stability

2. Extent to which the reduced-order
compensator impulse and step response
match the full-order, LQG, compensator
response

3. The closed-loop quadratic cost

However, item 3 will not be considered since costs
for methods 1-5 were not provided (1]. The
comparison in item 2 examines the output y(t) in
response to an input v(t) injected in the loop as
indicated in Figure 3.

") =" @D —— [‘(,,- "c""]"_“—’ [c(,,._‘,-x,}___, y
I €

wit) * Unit step or impulse

(l.l.h.) ® full-erder LQG ec atder saias

Pigure 3. Camparises of unit otep or impulse respenses

‘First, Table 2 summarizes the closed-loop
stability properties of all design methods in all
42 cases. Generally, it is seen that all smethods
achieve a high rate of success in achieving
closed~loop stability for the larger “c values and

small - On the other hand, methods 1-5

experience greater difficulties for low values of
"c and, psrticularly, for large LoD With respect

to stability, the only qualitative distinction
acong the mathods is that method 6 (optimal
projection) produces stable design in all 42
design cases,

The trend toward increasing difficulty of the
design with increasing disturbance noise intensity
is highlighted by Table 3 which shows the
percentage of closed-loop stable designs given by
the different methods for the different values of
9, and in total. That the fraction of stable

designs declines with increasing 9 is to be

expected since larger disturbance noise intensity
increases Q, thereby increasing observer gains to
produce fastar observers that are mcre sensitive

to order reduction.

Overall, for this example¢ problem, method 4
exhibits the smallest fraction of stable designs
(with 24 unstable designs) and does not achieve
any order reduction for 9, " 100, 1000, 2000. Of

the LQG reduction methods (1-5), methods ! and 5
fare best - with only & unstable designs out of
42, As noted, optimal projection (method 6)
yields stable designs in all cases.

To permit independent corroboration by
interested readers of the OP design capsbilities
wve give numerical values of the compensator gains
obtained by method 6 for a selection of the wore
difficult cases* — namely:

* See Reference [13] for s complete listing of all
42 cases

Teble 2. Stakility of the Reduced-Order Comntroller
by Pit{erent Mwthode

)
Mot hod }\ o.o0f 01| 1 | 10 | 100 2000 | 2000
(3
? H s ] s ] s s
[ ] 3 $ $ H -4
nns (1) s 3 3 s s s £ 3
. $ ] L} 1 $ E
3 $ $ s ] s s s
2 t ] s [} v v
7 $ H H H ] v H
* ] s $ H v v [}
Clover (2) s 3 § ] 5 v v v
4 8 4 s s '] [} v
3 Hd H [} $ '] v v
3 ] v ] L $ '} v
? H ['} v s H H s
[ s s s s 3 ] 13
Devis & $ 4 ] N s v v
Selten (3) 4 8§ v s § v [}
3 v v v v [} v v
2 H v £y v v v v
7 3 3 ] H v ] v
[ 1 1 H H v v ']
Yousut! & 3 ] 1 s v v v v
Sheitor (&) 4 3 ] s v v u v
3 ] v v v [} v v
2 $ 3 s v '] v (']
7 8 H 3 5 1 [}
[} 3 ] s s s ['}
Liu & H 3 s s ] s L4 s
Andorsen (5) L3 H 3 $ s 3 $ Hd
3 $ s s 13 £ 19 v
2 1] 1 L - H H s
4 $ § H $ H 13 13
. 1 ] s H 1 H &
Optioal b 1 $ $ Hd s 8 $
kruvjecticr. . » 3 1 1 ] s> &
) 3 $ 1 3 £ s s s §
1 H 1 H 3 H H $
S - The closed<loop eystea is stalle
V - Unstedic
Table 3. PTarcestege of Stable Designs Givea By
the Bifforvat Nethads
- Total 3 ter
- 0.01§ 0.1 ] 10 1 300 | 1000] 2000} A1l Coses
- N
Bans (1) 100 | 100 | 100 | 100 | ®3.3| W.3]| 6.7 0.3
Glever (2) 100 { 83.3] ©3.3] &3.3] 33.3{ o 1s.7 $T.4
Devis & Skeltes (3) 3.3} 33.3] 50.0) 06.7] 64.7] 33.3] 33.3 $3.6
Yousuft & Sheltem (4)| 100 | 3.3 .| 32.3{ o ° o 42.9
Liu & andexeon (3) 100 } 100 | 100 ] 100 | 100 | &3.3{ 0.0 20.3
Uptimsl Prejection (6) 100 | 220§ 200 § 100 { 100 | 100 | 100 100.0
1

q, = 2000, N, = 2, 3, 4,5,.6,7
N, = 2. q, = 0.0, 0.1, 1.0, 10, 100, 1000, 2000

Next, consider the accuracy with the step and
impulse responses (see Figure 3) of the various
reduced-order compensator designs track the
corresponding response of the full~order LQG
design. These characteristics exhibit similar
trends as noted vith respect to closed-loop
stability. For example, Figure 4 shows a
comparison of unit step responses for second-order
compensator designs with a small value of
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Figure 4.2 - Comparison of unit step responses of

sscond-order compensators given bv methods 1-5
with full-order design (small ‘2)
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Figure 4.b - Comparison of unit step responses of
second~order compensators given by methods 1, S, and 6
with full-order design (small qz)

q, (= 1.0). In this case, all methods extibit

stability and reasonable agreement with full order
design. However, as the comparison of methods 1-5
in Figure 4.a shows, methods 1 and § show
distinctly superior tracking accuracy. For -
clarity, methods 1 and 5 are compared with method
6 in Figure 4.b. Here it is clear that method 5

is somewhat closer to the LQG response than methcd
1 while method 6 is closest of all.

Similar trende are seen in the comparisons of
the impulse responses (for the same design csse)
in Figure S. Once again, of the LQG reduction
methods (compared ir Figure 5.a), methods 1 and 5
display significantly better agreement with the
LQG response. This agreement is slightly exceeded
by method 6 (Figure 5.b), but on the whole,
methods 1, 5 and 6 show excellent performance.

On the other hand, for a fairly large value
of Qg both stebility and agreement with LQG

response is degraded somewhat for several methods.
Figures 6 and 7 show comparisons of unit step and
impulse responses for the case Nc =S5, 9, = 100.

Ia this case, only methods 1, 3, 5 and 6 yield
stable designs and are thus compared. Of the LQG
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Figure 5.2 - Comparison of impulse rassponses of
second-order compensators given by sathods 1-5
with full-order design (swall q.)
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Figure 5.b - Comparison of impulse responses of
second-order compensators given by methods 1, S, and 6
with full-order design (small qz)

reduction methods, method 5 exhibits distinctly
better asgreement with the LQG responses. Once
agsin, it is found (Figures 6.b and 7.b) that
method 6 somewhat excels in the sccurscy with

wvhich it's transient responses track the full-
order design.

Thus, for the 42 design cages studied in this
example problem, methods 1 and 5 demorctrate good
success in achieving stable closed-loop designs

while method 6 achieves stable designs in all
cases.

Algo, in the cases examined, methods 1 and 5
offer good transient response characteristics
while method 6 tracks the full-order compensator
responses the closest.

In view of the good perfcrmance exhibited by
method 6, ve present, in the remainder of this
section, additional details on the OP design
tesults and the performance of tha solution
algoritha described in Sectiom 3.
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Figure 6.a ~ Comparison of unit step responses of
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First, as noted, the OP design philosophy
focuses on the steady state quadratic performance
index, J, (defined in (3)) as the "figure of
merit® for a reduced-order compensator design.
Thus, we appropriately display, in Figure 8,
several plots of the performance index J
(normalized by qz) versus compensstor order for

all 7 values of - Note that apart from minor

variations that are likely due to the benign
convergence tolerance used in the solution
algorithm, J generally decresses monotonically
with increasing Nc. These graphs thus illustrate

the basic tradecff between performance and
controller complexity.

Note that for small q, (Figure 8.a),

performance is not much seffected by order
reduction. This is to be expected since sasall
digturbance noise intensgity, in thias problea,
leads to low observer gains and to small values
for the terms involving 7, in equarions (10).
Since the 7, terms in equations (10) have little
effact, the OP designs are approximated by
balanced projections of the LQG design. This
might also help to explain the relatively .
successful performance of all methods for small

Gy

For large (Figure 8.b) end for very large
(Figure 8.c) values of 9, bovever, the

degradation of performance with reduction in order
is increasingly steep. For example, vhile for
9y = 1.0, the 2nd order performance is only 2.5%

above the LQG performance, for 9, = 2000, the

second-order performance is 2707 above the LQG
value, Thus, order reduction under large
disturbance noise does appear to be a more
delicate matter.

Vhile incressing difficulties with q, sre not

clearly manifested in the stability oz tremsient
response properties of the OP designs, these sre
reflected in the computation required tc arrive at
the fioal designs.
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To explain this we now describe the specific
design steps taken and the performance of the
solution algorithm. Each design case was treated
using the OP solution algorithm shown in Figures 1
and 2 snd s maximum homotopy step size of 1.0 was
input, Furthermore, for each design case, the
algorithe was started "cold® - i.e., without being
initialized with gain values cbtained in previous
ceses. On initial application of the slgoriths,
the OP design results presented here were obtained
sfter using the numbers of inner loop iterations
given for each case in Table 4. -

Table 4. lumber of Inmer-ieep Iterations Used in OF Solutisa Algerithm
=~ Iaitial Desigs Cempuratioas

Y
0.01 [ 3 i 10 100 | 1000 | 2000
Ovdec, .e

? F 2 3 4 3 L] 10
[ 3 2 i ] o [] 10
3 2 2 3 L E] s ?
4 2 2 2 ] ] L] 10
3 4 4 4 8 14 ? ]
H 4 4 4 ] ] ] 10

Note that with A = 1.0, the logic of the
outer loop (Figure 2) implies a sinimum of two
inner-locp iterations. Inspection of the results
obtained in some of the benign cases suggested the
possibility that only one inner loop iteration vas
needed. Consequently wve re—examined the cases
comprising 9, = 0.01, 0.1, 1.0 and Nc =5, 6,7,

by revising the outer loop logic to output gain
values after only cne pass through the imner loop.
It was found that this produced scceptsble

accuracy in the cases 9, = 0.01; “c =5,6,7,

.
<) CURVE | ‘2 qz = 0.1, "C =6, 7 and qz = 1,0, “C = 7. Thus,
wa.s \ X | 1oco the revised results are as given in Table 4.
; o 2009 Since the gaing are essentially unchanged, the
2 ~ design results obtained on the first spplication
= 30 3 are the ones presented here.
z 3
; %63.e 3 Table 4'. Wusber of laner-ioop Iterstions Used
§ 3 la OF Seluctioa Algerichs
[ - E ~ Bavised aftar recuhsidarstios of cases
; = o0 _3 qg ® 001, 0.1, 1.0 ¥_ = 5.6.7
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As Table 4' shows, relstively few iterations
were required in the benign, smsll 9, cases. In

particuler, only one inner loop iteration was
needed in most of the cases comprising 9y = 0.01,

0.1, 1.0 and “c =5, 6, 7. Bowever, for large 9,0

up to 10 iterations were required. Thus it is
clear that all methods run up against a
fundgmental source of difficulty when disturbance
noise is large.

At the time of writing, full compilstion of
the computation times required for all methods on
the same machine is not svailsble. All OP
calculations were performed on a Harris H800
minicomputer. However, as a rough estimate, it is
fair to say thst in the benign cases, the OP
computation is comparsble to the burden incurred
by methods 1-5. For the difficult, large q, cases

the OP computational burden ix clearly in excess
of methods 1-5 (although certainly not excessive
from a practical point of view). However, it is
precisely in these cases that the LQC reductionm
methods experience the greatest difficulties in
producing closed-loop stable designs. Thus a
wesningful comparison of relstive computstional
burden in these cases cannot be performed.

Finally it should be noted that the
computstional burden sssociated with OP for the
designs presented here is also an artifsct of the
solution algorithm depicted in Figures 1 and 2 and
is not solely the result of the design equations
themselves. This algoritha was convenient to use,
and vas the first isplemented since it requires
only standard LQG software. On the other hand,
the algorithm discussed in section 3 takes no
particular advantage of the special structure of
the fundamental design equations, (10). Its
principal draw-back is that it involves the
iterative solution of four NxN, nonlinear matrix
equations. To remedy this, Richter [12] has
developed a step—wise homotopy slgoritha which
requires, at each homotopy step., the solution of
four N xN linesr equations. Clearly, for smsll

Nc. this offers the potentisl for computing an OP

design with less computational burden than is
required for a full-order LQG design. It is
anticipated that the future utilization of
Richter's algoritha will permit a more accurate
and definitive comparison between the
computational cost of the LQG-reduction techniques
and the Optimal Prcjection formulation.

5. Concluding Remarks

In this paper, we have used the example
problem of Enns [2] to perform a computational
comparison of six methods for reduced-order
dynamic compensator design. Methods 1-5 are based
upon LQG-reduction procedures while method 6 is
based upon the Optimal Projeczion (OP)
forsulation,

0f the LQG-reduction methods, the methods of
Enns {2] and of Liu and Anderson {1] exhibited
particularly good stability and transient response
properties. Mowever, in the cases examined, the
OP method gave somewhsat better transient response
characteristics snd, unlike the LQG-redvetion
procedures, produced closed-loop stable designs
for sll the 42 design cases.

10

A precise comparison of the computational
burdens incurred by the various methods is not
possible at present. However, &s a rough
comparison, it is fair to say that the OP method
entsiled comparable computation in the relatively
benign design cases and more computation in the
difficult cases. However in this case LQG
reduction methods often produce unstable designs.
Thus the OP method exhibits a tradeoff between
computational burden and corresponding design
reliability. Present developments are directed
toward implementation of advanced homotopy
techniques which take particular sdvantage of the
structure of the basic OP design equations to
markedly improve design computat ' on speed.

Appendix 1

In the following, numerical values¢ of
the reduced-order compensator gains, K, F and Ac

obtained via the OP solution algorithm discussed
in section 3 are given for the design cases:

qz = 2000. Nc z 2. 3. ‘o 5‘ 6u 7
and
: Nc = 2, qz = 0,01, 0.1, 1.0, 10,
100, 1000, 2000
est: g, = 0.01, N a2
0.13572-01 -0.1398
A =
¢ | 0.3985 -0.3430
FT = | 0.3451E-02 0.9371E-01)
K = [~0.3045R-01 0.1421)
CASE: 9, = 0.1, Nc =2
0.99155-02 -0.1578
A =
€ 0.76%0 -0.5093
FT = [ 0.16955-02 0.1264]
K = (-0.57298-01 0.2733]
CASE: gy o1, W =2
9.7832E-02 -0.1812
A =
€ 1.269 -0.7143
B« [ 0.8516E-03 0.1356] o ‘.‘ﬁ
X = [-C.1003 0.5206




GASE: q, = 10, N =2

0.7474E-02 0.1970 °

-1.699 -0.8276
{ 0.4814E-03 -0.1081)

[-0.1740 -0.9190

0.1745E-02 0.4039

-2.129 -0.7569E-02
[~6.62632-04 0.7341E-01])

{ 0.3753 0.5049]

CASE: qzszooo. N‘SS

0.2351E-02 0.1316 0.1492
=1.447 ~0.9385E-01 0.6597
-1.592 -0.7041 =0.10272-02

[ 0.5944E~04 -0.36192-01 -0.3990E-01)

K = [-0.5372 ~1.410 0.1033]

CASE: %, " 100,

0.2742E-02 0,4216

-2.396 -0.22742-03

¥* = [-0.1538E-03 0.1303]}

X = [ 0.2351 0.4178)

CASE: g, = 2000,

-0.8378E-Q3 ~0.4671

2.047 ~0.:0952-01

¥’ = [ 0.3272E-04 -0.7625E-01)

x = ( 0.3807 -0.6411)

CASE: q, = 2000.

0.32258-02 -0.3717

<

K =2

H=l6

0.12382-01 -0.57352-01

2.170 ~5.38605-02 ~-0.3623 -0.1829E-01

A =

¢ l-0.1140 0.5365 —0.25648-01 -0.2749
1.176 -0.1297 0.3488 -0.4452

!‘T = [ 0.92458-04 0.60442-01 -0.32342-02 0.33702-01]

K = (-0.4871 0.5626 0.6852

v

CASE: q, = 2000, N =5
0.1335E-02 -0.3220 0.54628-02 0, 4440E~01 -0.1903
2.226 ~0.3920E-02 ~0.4659 -0,3941E-01 0.4951E-02
A = |-0.54185-01 0.6432 -0.1099E-01 0.2117 -0.4355
-0. 8042 0.2011 -0.2791 -0.1891 -1.488
L 6.046 -0.1203E-01 1.376 2.351 -0.6778E-03

PT = [ 0.40188-04 0.6557E-01 ~0,1614E=02 -0,2413E~01 0.1817)

K = [-0.4697 0.5101

0.81908-03 ©0.3031
-2.356 -0.2845E-02
-0.75928-02 =0.6887
b -1.358 -0.9398E-01
-8.168 -0.1i05E-0]
t-lﬁ.l? -0.4290E-01

T s [ 0.27138-04 ~0.7675E-01

K s [-0.4326 -0.5140

0.4346 -1.79% -G.4017E-01}
CASE: 4, = 2000, N,= 6
0.8960E-03 0.7075E-01 0.3110 0.2265 1
0.5058 0.1198E-01 0.38472-02 ~0.43068-01
-0.14318-02 0.23%6 0.7586 0.5132
~0.3875 -0.1281 1.265 -0,8882E-01
-1.861 -3.709 0.1190E-02 0.1426
-3.152 ~1.545 -0,3782 -1,799
-
-0.2492E-03 -0.4487E-01 -0.2702 -0.5356}
0.1322 ~1.345 -0.1364 -3.524)
11

2.540]

A




»
CASE: %y " 2000, Nc =7
. -
, r0.8603!—0:\ ~0.3083 -0.1180E-02 0.6098E-01 -0.2844 -0.2619 =0.9244E-03
' 2.329 -0.28218-02 0.4921 -0.1784E~01 0.44688-02 -0,4780E-01 ~0.1950E-02
0.50412-01 -0.6794 -0,20572-02 -0.2171 0.6977 0.6175 0.4106E-02
Ac = |-1,169 0.1132 0.3505 -0.1381 -1.303 -0.19298-01 0.2136E-01
7.960 =0.1091E-01 ~1.846 1.851 0.9687E-03 0.1872 0.7926E-02
19.90 =0.46958-01 ~4,056 2.398 -0.4123 -2.407 -0.7051E8~01
L. 0.1906 ~0.4634K-02 -0,3824E-01 0.2680E-01 -0.5793E~01 -0.3975 -o.le.zz-oxj

! = | 0.28328-04 0.7462E-01 0.3362E-03 -0.3801E-01 0.2586 0.6490 0.6217E-02)
K = (-0.4387 0.5134 -0.1642 ~1.591 0.70638-01 3.924 0.1567]
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ABSTRACT

The purpose of this paper is to present a homotopy algorithm for
solving the Optimal Projection Equations. Questions of existence and
the number of solutions will also be examined. It will be shown that
the number of stabilizing solutions to the given Optimal Projection
Equations can be determined and that all solutions can be computed via a
homotopic continuation from a simple problem. For an important special
case, where the number of inputs or the number of outputs to the system
is less than or equal to the dimension of the compensator, there is only
one solution to the OPE, thus guaranteeing that globally optimum reduced
order controller can be computed.

1. Introduction

Despite significant advances in the cost and performance of digital
computers over the last decade, there remains a need in several
technological areas for low—order, high-performance controllers. In
particular, this paper is motivated by the problem of vibration
suppression in large flexible space structures. Such systems are
infinite~dimensional (distributed parameter) in nature and hence any
finite-dimensional controller is necessarily of reduced order. The need
for low-order controllers is further driven by severe constraints on
cost, weight and power in space systems, not to mention the restriction
to space-~qualified computational hardware.

A wide variety of approaches have been proposed to cbtaining
reduced-order controllers. A comparison of several approaches to
controller reduction is given in [1]. These methods cperate by first
designing a high-order LQG controller and then obtaining a suitable low-
order controller by means of controller reduction.

A more direct approach to designing reduced-order controllers
involves optimizing the quadratic performance functional over the class
of controllers of fixed order. The controller order may be determined
by implementation constraints or can be varied for
performance/throughput tradeoff studies.

Supported in part by the Air Force Office of Scientific Research under
contract F49620~-86-~-C-0038,
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An interesting reformulation of the parameter optimization approach
was given recently in [2]. By setting the gradients to zero, the
authors showed that the first crder necessary .conditions can be
transformed to yield explicit gain expressions for extremal fixed-order
controllers. An appealing aspect of this formulation is the recasting
of the necessary conditiong in a form which generalizes the classical
(full-order) LQG solution. Specifically, instead of a pair of separated
Riccati equations, the necessary conditions for fixed-order dynamic
compengsation comprise a system of two modified Riccati equations and two
modified Lyapunov equations coupled by an oblique projection whose rank
is precisely equal to the order of the compensator. When specialized to
the full-order case, the projection becomes the identity, the modified
Lyapunov equations drop out, and the modified Riccati equations simplify
to the classical Riccati equations. Hence this approach appears to be a
natural and fundamental generalization of LQG.

Regardless of how appealing the optimal projection formulation may
appear to be and in spite of the empirical advantages claimed in [2-10],
its contribution is vacuous unless certain serious questions can be
resolved. These include:

1. Under what conditions on the problem data can the\optimal
projection equations be guaranteed a priori to possess a
gsolution?

2., Given problem data, exactly how many solutions do the eduations
possess?

3. Of the possible solutions, what are their stability properties,
vhat is their performance, and which is the global optimum?

4, How can numerical algorithms be constructed which can be
guaranteed to converge to any desired solution especially the
global minimum?

It seems clear that any attempt to address the above issues must
utilize mathematical methods which are global in nature, To this end we
have applied degree theory and associated homotopic continuation methods
([13-24]) to analyze the solutions to the optimal projection equations
and to construct convergent, implementable algorithms for their
computation. The purpose of this paper is to report significant results
in this regard.

2. Homotopic Continuation and Degree Theory

2.1 Homotopic Continuation. A homotopic continuation method for
solving a problem is to first solve an easy "similar" problem, and then
to continuously deform the easy problem into the original problem and to
follow the path of solutions as the easy problem is deformed into the
original problem. This is shown conceptually in Figure 1.
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Figure 1

The problem then beccmes to follow the path of solutions x(t) of F(e,
x(t))=0 from t=0 to t=1. Differentiating F(t, x(t))=0 with respect to t
one obtains the Dauidenko differential equation

E_(c, x(:))gf + F (¢, x(t)) = 0, or

& . M e, x(0) Fles x(e)), x(0) = x

Integration of this initial value problem yields x(1), the solution to
F(x)=0.

Example 1. Consider calculating the roots of a polynomial

F(z) =2 +a, 2°0 & azzn‘z... +a_ =0,

Let the easy problem be FO(Z) = zZ" - 1= 0 and defom Fo to F

1 + a zn-zuaoan) - 1 + t.

_ on n-
F(Z,t) =2 + t(a,2 2%n

At t=0, F(Z.0)=F0(Z) and F(Z,1)=F(2).

The solutions Zk(t) which satisfy F(Zk.t)=0 are found by differentiating
F(Zk(t),t)=0 to obtain

n-1 -2
EEE _ alzk + azzk ...an -1

dt nz:’l + t(al(n-l)Z:-z...an_l)

.A- .

el




This differential equation can be integrated from the n initial values
z (0) =e- 32Ty
n

to the n solutions at t=1.

-

2.2 Degree Theory. The main theoretical question which must be
ansvered when using a continuation method to solve a given problem is:
Is there in fact a continuous path of solutions connecting F(0,x)=0 with
F(1,x)=0, and if so, how many paths are there?

Topological degree theory can be used to answer this question.

Definition 1: Given a function f mapping D in RN into V in Rx a regular
value of £ is an element p in V such that the MxK matrix of partial

derivatives of f, fx(x). has full rank for each x in f-l(p). Note
that if N=K then fz(x) having full rank is equivalent to
det(fx(x))#o.

Definition 2: Given a function f mapping an open set D in RN with

boundary D into V in RN and a point p in V, the degree of f for
domain D and point p (written Deg(f,D,p)) is defined and is an

iriteger if there.is no x in the boundary D of D such that £(x)=p.
If p is a regular point of f then the degree is the sum of the
signs of the determinant of the Jacobians of f evaluated at all x
such that f(x)=p, i.e.,

deg(£,D,p) =& Sign( Det(fx(xp)))
vhere f(ip) =p

The degree has the following properties:
1) 1If deg(f,D,p) # 0 then f(x)=p has at least one solution in D

2) Let f(x,t) : RN to RN for each t in [0,1] with f continuous. If for

each t, f(x,t)=p has no solutions for x in D, then deg(£,D,p) is
constant for t in [0,1].

3) If £ is as in (2) and deg(f,D,p)#0, then at least one solution of
£(x,0)=p connects with a solution of f(x,1)=p.
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Example 2. Every polynomial has at least one root (over the complex
numbers)

Let £(z) = " + a zn-2 +o.e.a

1
We wish to show that deg(f,D,0)#0.

n-i n-2

) . n
+ t(alz + 8,z + ... + an) 1+¢

Let £f(z,t) = z

Let D=z such that |z|<R, where R is some large number.

For z on D (lz|=R) z" is much larger than taizn-l so £(z,r)#0 for z

in D, thus deg(£,D,0) is comstant for t in [0,1].

For t=0, £(2z,0)=z" - 1 snd writing f(r,d)=x + iy we have that the
solutions to £(r,0,0)=0 are r=1, f=kn/2n for k=0,1,...,n

rncos(n*e) + 1.0

r sin(n*@)

£(z,0) =

The Jacobian of £ is

nrn.lsin(n*O). nr cos(n*g)

£ = [nrn-lcos(n*O). —nrnain(n*O)]
r.0 *

2 _2n-1
4

Det( fr } =n

0

The sign of the Jacobian is always +1, thus deg(f,D,0)=n

3. Homotopy for the Optimal Projection Equationms

The object is to find P, Q, P, Q, whicﬁ solve

_ T L= - T
0=4AQ + QA" + V1 Q<zQ + TlQEQfL.
0= AP T
= + PA+ R, -PZP + 7 PIPr,
1 171
0 = (A-ZP)Q + Q(A-ZP)" + QXQ - T.LQm'.L'
_ =T 2 = T
0 = (A-Q2)°P + P(A-QZ) + PIP =~ ?l?ZPTi

A, A

" . I i

. i "




r= GT » Where

QP =6MI, TeT =1

given Z, Z, Ri» V;» » m, A, To do this let

<,
D,
A(t) = D2 (1-t) + tA
D
n
Rl(t) = I(1-t) + tRl. Vl(t) = I(l-t) + tV1
on 07
Z(e) = (1-t) + I
-0 od
- (2, 0] -
Z(v) = (1-t) + tZ
R 0

For t=0 the solution is easy to find. The object is to follow the path

or paths of solutions P(t), Q(t), P(t), Q(t) from t=0 to t=1. Note that
if 8 _>win{4,n} - n, then there is only one solution at t=0. If

in{4,p} - n,
solutions at t=0.

. n
n <m {4,p}-n  then there are (

n-=-n
c u

In following these initial solutions from t=0 to t=1 there are
several situations which could occur (see figure 2).

7Y T ——
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Figure 2
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It can be shown using degree theoiy that the situations shown in
dashed lines cannot occur. That is, the only solutions to the OPE at
t=1 (or for 0<t<l) are those which are continuously derived from the

solutions at t=0.

Thus we have the following result, Let n, denote the dimension of

the unstable subspace of A.

Main Theorem. Assume that the plant is stabilizable and
detectable, V1>O. R1>0 and n <n.. Then, in the class of nonnegative-—

definite solutions Q, P, Q, P with

rank Q = rank P = rank QP = n,

the optimal projection equations possess at most

(min (nlm' l) "nu

n -n ) » n, ¢ min(n,m, 4),
cu

1 . otherwise,

stabilizing solutions. Each such solution is reachable via a homotopic
path with starting point corresponding to diagonal initial data.
Furthemore, if the plant is stabilizable by means of an ncch-order

dynamic compensator, then there exists at least one solution.

Remark 3.1. As shown in [26], stabilizing controllers of arbitrary
reduced order may not always exist.

The proof of the main theorem is lengthy and technically complex
and beyond the scope of this paper. Rather than proving the main
theorem for “the optimal projection equations, the full order Riccati
equation will be examined using degree theory to obtain some well known
results for the Riccati equation. The proof of the main theorem follows
the same method as will be used for the full order Riccati equation.

Full Riccati Equation: ' . -

We will now use degree theory to examine the full order Riccati
equation

(1) ATP + PA - PSP +V =0

Where A is an nxn matrix and S and V are nxn symmetric matrices with
V>0. Denote |P| = max IPijl and restrict P to be symmetric. Define

F(x,t) to map RY into RN(N=n(n+1)/2) for each t in [0,1] by

(2) F(P,t) = AT(t)P + PA(t) - PS(t)P +V(t)




where A(t), S(t) aﬂd V(t) are continuous and S(t), V(t) are symetric‘
with V(t)>0 . Let D be the set of all P such that [P[<R and P>0. This

ig an open set in RY. The object is to show that Deg(F,D,0) is constant
and # 0 for t in [0,1].

Lemma 1. There exists R>0 such that for all t in [0,1], if P
T
satisfies (2) and (A(t),B(t)) is stabilizable, then |PI<R. Note S=BB".
Proof: Suppose that the lemma is not true, then there must exist
€ and Pi such that F(Pi.ti)=0 ., and lPil —> o, We will show that this

cannot occur.

Let P, = P./|P,] so |P.|P. = P, . Then
1 1 1 1 1 1

T s 5 5 3 -
A (ti) Pi + P, A(ti) - IPiI Pis(ti) Pi + V(ti)/lPil =0

Write 1-’i = P:.: + Pi. where P:.:B = 0 and Pi is in the range of B. Then
T,,1 2 1 2 2 T .2 _
A (Pi + Pi) + (Pi + Pi) A lPil P, BB'P; + v/lPil =0

Since P:’_ and Pi are bounded and A and V are bounded, and lPil -—> e,

P? -3 0. Thus
i

T 1 1 2 T 2 _
APy + AP, - |P | Py BB P = o(1/,pi|)

Multiplying on the left by B and on the right by B yields
T2 T2
12,1 B PIBBRSB = 01/ IE, D).

T

Thus BTPiBB PiB is bounded, note that this does not imply that l?:.LBBTP:.L

is bounded, but it does imply that PiI/ZB is bounded. Let SG = limit

pil/anTpiI’Z and F be linit F_, then

T s1l/2

ATE + Ba - 31/ %5¢ 51/2

= 0.

%* -
Note also that P the subspace spanned by P is an A invariant subspace,

* % * *
i.e. AP is contained in P. Let A be the operator A restricted to P.

* *
Since P is an invariant subspace, eigenvalues of A are eigenvalues of A.
P

A and P satisfy

Je.

. ]



1/2 51/2

- - * -
—AT)F + B(-h) + Y282 - 0

1/ZSG—1/

- * .
Since P>0 and P P 239 we have (-A) is neutrally stable.

Since PB=0 we finally have that there exists eigenvectors of A say E,
such that BE=0 and the eigenvalue of AE is non-negative, or that A,B is
not stabilizable. Thus lPil --> @ implies that A,B is not stabilizable,

so A,B stabilizable implies [P, | bounded. QED

Lemma 2. F(P,t)#0 for P in D. Proof: D consists of all symmetric
P such that either [P[=R and P>0 or [P|<R"and P>0 with P singular.
Lemma 1 has shown that F(P,t) # 0 for |PI=R. Suppose there exists a P
which is singular with F(P,t)=0. Then there exists a vector u such that

Pu=0 and u P=0. Multiplying (2) on the left by ul and on the right by u
yields ulV(t)u=0, which contradicts V(t)>0. Q.E.D.

We now have that Deg(F,D,0)=const for all t in [0,1].

Lemma 3. Deg(F,D,0)=1. Proof: Let A(0), S(0), and V(0) be
diagonal. There is only one positive definite solution teo (2) for this
A,S,V, and this solution has Jacobian non-zero, thus the Deg(F,D,0)= +1.

The above analysis shows that there is always at least one solution
to F(x,t)=0 and that the solution set at t=0 (comsisting of just one.
point) connects with the solution set at t=1, but the solution set at
t=1 may consist of more than one point 8o that the desired solution is
not obtained from the homotopy. We will now show that this is not the
case, i.e., for the full Riccati equation, there is one and only one
positive solution at each point on the homotopy path.

Proof: Let F: C —> C by

F(P,t) = ATP + PAT - PS(t)P + V(t)
where A(t),S(t), and V(t) are as above and P is an nxn complex matrix.

Let D be all P such that |P|<R, and real vart of eigenvalues of P
are positive. ‘

D is open domain in C~ . By the same argument as in the real
case, F(P,t) # 0 for |P|=R. Also, it can be shown that only solutions
to F(P,t)=0 are Hermitian, so the eigenvalue of P are real. Thus

F(P,t)=0 and P in D is for |P|=R (which ¢annot occur) or for P to be
singular and F(P,T)=0 which also cannot occur. Thus the deg(F,D,0)=
const for t in [0,1], and by using A(0),V(0), and S(0) diagonal, we get
that deg(F,D,0)=1.




We also know that an analytic map from Ck into Ck preserves
orientation, that is the Jacobians always have the same sign, thus we
have that the number of solutions (at a regular value) is equal to the
degree and is always less than or equal to the degree. Thus we have
that there is one and only one complex solution to (2), and since there
is at least one real solution, there is one and only one real positive
solution to (2).

4, Algorithm Description and Numerical Results

In a homotopy path following algorithm one follows the path of
golutions of F(n(t),t) by integrating the initial value problem

L= @ EE®.0; x(0) = x,.

For the optimal projections equations the solution P, P, Q, Q can
be easily determined once r is known so the P(t)=P(7(t)), Q(t)=Q(r(t))

etc. Thus the derivatives of P, Q, P, Q can be written in terms of

derivatives of GT and I. Thus we obtain

vec [I‘T'] = [M] vec f(I‘.GT).
G

. ' - -

which gives 2ncn equation for I'' and GT . P', Q', P' and Q' are then
. ]

calculated from I" and T and finally I'(t+At) is updated by

T(t+Alt) = T(t) + +T1' x At

and likewise for G, P, Q, P and Q.

Figure 3 summarizes the results reported in [1] for LQG reduction
methods along with results obtained using the homotopy method for
solving the optimal projection equations. Here 9, is a scale factor for

the plant disturbance noise affecting controller authority. Clearly,
LQG reduction methods experience increasing difficulty as authority
increases, i.e., as the r terms become increasingly more important in

coupling the control and reduction operations.

One of the main goals of the development effort was to extend the
range of disturbance intensity or, equivalently, observer bandwidth, out
beyond q2°2000. To.this end, second-order (n =2) controllers were

obtained with relatively little computatlon for q2—10 000, 100,000,

1,000,000. The performance of these results is summarized in Figure 4.
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Sequential design of decentralized dynamic compensators using the
optimal projection equations

DENNIS S. BERNSTEINt

The optimal projection equations for quadratically optimal centralized fixed-order
dynamic compensation are generalized to the case in which the dynamic com-
pensator has, in addition, a fixed decentralized structure. Under a stabilizability
assumption for ihe particular feedback configuration, the resulting optimality
conditions explicitly characterize each subcontroller in terms of the plant and
remaining subcontrollers. This characterization associates an oblique projection
with each subcontroller and suggests an iterative sequential design algorithm. The
results are applied to an interconnected flexible beam example.

1. Introduction

The purpose of this note is to consider the problem of designing decentralized
dynamic feedback controllers using recently obtained results on quadratically optimal
fixed-order dynamic compensation (Hyland and Bernstein 1984). As in Bernussou
and Titli (1982), Looze et al. (1978), and Singh (1981), the overall approach is to fix the
structure (information pattern and order) of the linear controller and optimize the
steady-state regulation cost with respect to the controller parameters. The underlying
philosophy is that the ability to carry out such an optimization procedure permits the
evaluation of a particular decentralized configuration which may be dictated by
implementation constraints. If there is some flexibility in designing the decentralized
architecture, then these results can be used to evaluate the optimal performance of
each permissible configuration, and hence to determine preferable structures. Since
the present paper is confined to the question of optimal regulation, trade-offs with
regard to robustness in the presence of plant variations are not considered. Such
trade-offs can be included, however, by utilizing the Stratonovich multiplicative white
noise approach developed by Bernstein and Hyland (1985).

To further motivate our approach, consider the problem of controlling an nth-
order plant # by means of a decentralized dynamic compensator consisting of
subcontrollers €, and ¥,. A straightforward design technique that immediately
comes to mind is that of sequential optimization (Davison and Gesing 1979, Jamshidi
1983). To begin, ignore €, and design €, as a centralized controller for 2. Next,
regard the closed-loop system consisting of 2 and €, as an augmented system ' and
design %, as a centralized controller for #'. Now redesign €, to be a centralized
controller for the augmented closed-loop system composed of # and €¢,, and so forth.
One difficulty with this scheme, however, is that of dimension. If, for example, one were
to employ LQG at each step of this algorithm, then on the first iteration €, would
have dimension n and thus €, would have dimension 2n. On the second iteration, ¢,
would require dimension 3n and €, would have order 4n, and so forth. Such

Received 15 December 1986.
+ Harris Corporation, Government Aerospace Systems Division, P.O. Box 94000,
Melbourne, Florida 32902, US.A.
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1570 D. S. Bernstein

difficulties can be avoided by setting n =0, which essentially corresponds to static
output feedback. Although easier to implement, static output feedback lacks filtering
abilities such as are inherent in LQG controliers, which are purely dynamic (i.e. strictly
proper).

As discussed by Sandell et al. (1978), p. 119, the explanation for this difficulty is
provided by the ‘second-guessing’ phenomenon: when LQG is used, each subcon-
troller must consist of linear feedback, not only of estimates of the plant states but also
of estimates of the other subcontrollers’ estimates. Hence the ‘optimal’ controller is
given by an irrational transfer function, ie. a distributed parameter (infinite-
dimensional) system. Such controllers, of course, must be ruled out since their design
and implementation (except in special cases) violate physical realizability (see, for
example, Bernstein and Hyland 1986).

Having thus ruled out zeroth-order and infinite-order decentralized controliers,
we focus on the problem of designing purely dynamic decentralized compensators.
Moreover, by invoking the constraint of fixed subcontroller order, we overcome the
second-guessing phenomenon. Utilizing the parameter optimization approach thus
leads to a generalization of the result obtained by Hyland and Bernsteir (1984) tor
centralized control. In brief, it was shown in Hyland and Bernstein (1984) that the
unwieldy first-order necessary conditions for fixed-order dynamic compensation can
be simplified by exploiting the presence of a previously unrecognized oblique
projection. The resulting optimal projection equations, which consist of a pair of
modified Riccati equations and a pair of modified Lyapunov equations coupled by the
optimal projection, yield insight into the structure of the optimal dynamic com-
pensator and emphasize the breakdown of the separation principle for reduced-order
controller design. For example, the optimal compensator is the projection of a full-
order dynamic controller which is generally different from the LQG design.
Furthermore, this full-order controller and the oblique projection are intricately
related since they are simultaneously determined by the coupled design equations. An
immediate consequence is the observation that stepwise schemes employing either
model reduction followed by LQG or LQG followed by model reduction are generally
suboptimal. For computational purposes, the optimal projection equations permit the
development of novel numerical methods which operate through successive iteration
of the oblique projection (Hyland and Bernstein 1985). Such algorithms are thus
philosophically and operationally distinct from gradient search methods.

The generalization of the optimal projection equations to the decentralized case is
straightforward and immediate. In the optimization process each subcontroiler is
viewed as a centralized controller for an augmented ‘plant’ consisting of the actual
plant and all other subcontrollers. It need only be observed that the necessary
conditions for optimality for the decentralized problem must consist of the collection
of necessary conditions obtained by optimizing over each subcontroller separately
while keeping the other subcontrollers fixed. More precisely, this statement corre-
sponds to the fact that setting the Frechet derivative to zero is equivalent to setting the
individual partial derivatives to zero. Hence it is not surprising that the optimal
projection equations for the decentraiized problem involve multiple oblique projec-
tions, one associated with each subcontroller. Furthermore, each subcontroller
incorporates an internal model (in the sense of an oblique projection of full-order
dynamics) not only of the plant but also of all other subcontrollers. The structure of
the equations suggests a sequential design algorithm such as that proposed in this
work.
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The simplicity with which this result is obtained should not belie its relevance to
the decentralized control problem. Specifically, our approach is distinct from sub-
system-decomposition techniques (Ikeda and Siljak 1980, 1981, Ikeda er al. 1981,
1984, Lindner 1985, Linnemann 1984, Ozguner 1979, Ramakrishna and Viswanadham
1982, Saeks 1979, Sezer and Huseyin 1984, Silkak 1978, 1983) and model-reduction
methods since the optimal projection equations retain the full, interconnected
plant at all times. For the proposed algorithm, decomposition techniques which
exploit subsystem-interconnection data can play a role by providing a starting point
for subsequent iterative refinement and optimization. Decomposition methods may
also play a role when very high dimensionality precludes direct solution of the optimal
projection equations. These are areas for future research.

With regard to the role of the oblique projection, it should be noted that such
transformations do not, in general, preserve plant characteristics such as poles, zeros,
subspaces, etc. Indeed, since the oblique projection arises as a consequence of
optimality, approaches that seek to retain system invariants (e.g. Uskokovic and
Medanic 1985) are generally suboptimal. In addition, the complex coupling among
the plant and subcontrollers via multiple oblique projections provides an additional
measure for evaluating the suboptimality of the methods proposed.

The plan of the paper is as follows. The fixed-structure decentralized dynamic-
compensation problem is stated in § 2 along with the generalization of the optimal
projection equations. In § 3 we propose a sequential design algorithm for solving these
equations and state conditions under which convergence is guaranteed. Finally, in § 4
the algorithm is applied to the 8th-order model of a pair of simply supported beams
connected by a spring. For this example, we obtain a two-channel decentralized
design which is 4th-order in each channel and compare its performance with the (8th-
order) centralized LQG design.

2. Problem statement and main theorem
Given the controlled system

X(t)= Ax() + Y Biuy(t) + wo() (2.1)

i1
y()=Cix(t) +wt), i=1,..p (2.2)

design a fixed-structure decentralized dynamic compensator
Xi(t) = Agxai() + Byyi(1), i=1,..,p (2.3)
u () =C x(t), i=1,...,p (2.4)

which minimizes the steady-state performance criterion

P

J(Aqy, B.y, Ceyy ooy Agyy Bey, Cop) 2 lim E[x(r)*kox(z) + Y u‘mTRiuim} 25)
t—oc i=1

where, fori=1,...,p: xeR", u;e R™, y,e R", ¢, e R", n & f ng, ng<n+n,—n,,

i=1 . .

A, B, C;, A, B.;, C., R, and R, are matrices of appropnate dimension with R,
(symmetric) non-negative definite and R; (symmetric) positive definite; w, is white
disturbance noise with n x n non-negative-definite intensity V,, and w; is white
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observation noise with [; x |; positive-definite intensity ¥, where wy, w,,..., w, are
mutually uncorrelated and have zero mean. E denotes expectation and superscript T
indicates transpose.
To guarantee that J is finite and independent of initial conditions we restrict our
attention to the set of admissible stabilizing compensators
o & {(Ay, By, Cey,s .., Agp, By, Cop): A is asymptotically stable}

cp>

where the closed-loop dynamics matrix A4 is given by
ia A BC,
B.C A4,

Ba(s, .. B, C&

where

G
C
A, @ block-diagonal (4., ..., A,)

B, 4 block-diagonal (B, ..., B,)
C. 4 block-diagonal (C,,, ..., C,,)

14

(For possibly non-square matrices S, S,, block-diagonal (S, S,) denotes the

|8 0
matrix .
0 S,

It is possible that for certain decentralized structures the system is not stabilizable,
i.e. of is empty (Wang and Davison 1973, Seraji 1982, Sezer and Siljak 1981). Our
approach, however, is to assume that & is not empty and characterize the optimal
decentralized controller over the stabilizing class. Since the value of J is independent
of the internal realization of each subcompensator, without loss of generality we can
further restrict our attention to

o, B {(Aey, Bey, Cers ooy Acpy Bep, Cep) € o (A, By) is controllable and
(C.i, A;) is observable, i=1,..., p}

The following lemma is an immediate consequence of Theorem 6.2.5, p. 123 of Rao
and Mitra (1971). Let ], denote the r x r identity matrix.

Lemmaqg 2.1

Suppose 0, P e R** are non-negative definite and rank 0P = r. Then there exist
G, € R"*? and invertible M € R"*" such that

Q0P =G"MI (2.:6)
r6T=1, .7

For convenience in stating the main theorem, call (G, M, I) satisfying (2.6),(2.7) a
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projective factorization of QP. Such a factorization is unique modulo an arbitrary
change in basis in R’, which corresponds to nothing more than a change of basis for
the internal representation of the compensator (or subcompensators in the present
context).

We shall also require the following notation. Let 4; denote 4 with the rows and
columns containing A; dcleted. Similarly, let R; be obtained by deleting the rows and

- columns corresponding to CLR;C,; in the matrix
R & block-diagonal (R,, CY, R, Cy, ..., Cl,R,C,,)
And furthermore, 7, is obtained by deleting the rows and columns containing B,; V,BY;
- in
7 A block-diagonal (V,, B, V; B,, ..., B., V, B},
Also define
B
. gi é [ :I’ Cl é [Cz Ol.x(nc—uc‘)]
L O(Hc ~Wei) X My

where 0, , denotes the r x s zero matrix. Note that 4, B;, C,, R and ¥, essentially
represent the closed-loop system minus the ith subcontroller as controlled by the
latter. Finally, define

iy

ziA iRi-lﬁliri ziéc-ir‘,i-lci
and, for T e R"*', let

1,8 —1

Main theorem

Suppose (A.;, B.y, Ceys.oes Aeps Bep, Cep) € o, solves the steady-state fixed-
structure decentralized dynamic-compensation problem. Then for i=1, ..., p there
exist (n+ n,—ng;) x (n+ n, — n.;) non-negative-definite matrices Q;, P;, @, and P,

such that A, B, and C; are given by

Au= ri(lzi - Qizi - ziPi)GiT (2.8) ]
Bci=riQiéiTVi_l (2.9} _“1
C.=—R;'BIP,Gf (2.10)

for some projective factorization G;, M;, T; of §; P;, and such that, with 7, = G T, the
following conditions are satisfied:

0=A4,0;+ QAT+ V. —0Q.%,0:+1,,0.£.0:7, (2.11) ﬂ
0=ATP,+ P, A+ R —PIP +1 PLPx, (2.12)
0= (/i.' - zipi)éi + Qi(ji -L,P)"+ QL0 — 1, 02,07, (2.13)
0=(4; - QL) P+ (A, - QL) + PL,P,— 1 P.E Py, (214) 4
rank §, = rank P, =rank 0,P,=n,, (2.15) —!f
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Remark 2.1

Because of (2.7) the matrix 7, is idempotent, i.e. ¥ =1,. This projection corre-
sponding to the ith subcontroller is an oblique projection (as opposed to an
orthogonal projection) since it is not necessarily symmetric. Furthermore, 7, is given in
closed form by

L= Qipi(éiﬁi)'

where ( )* denotes the (Drazin) group generalized inverse (see, for example, Campbell
and Meyer, 1979, p. 124).

3. Proposed algorithm
Sequential design algorithm

Step 1. Choose a starting point consisting of initial subcontroller designs;

Step 2. For a sequence {i,}5.,, where i,e {l1,...,p}, k=1,2,..., redesign subcon-
' troller i, as an optimal fixed-order centralized controller for the plant and
remaining subcontrollers;

Step 3. Compute the cost J, of the current design and check J,—J,_, for
convergence.

Note that the first two steps of the algorithm consist of (i) bringing suboptimal
subcontrollers ‘on line’ and (ii) iteratively refining each subcontroller. As discussed in
§ 1, the choice of a starting design for Step 1 can be obtained by a variety of existing
methods such as subsystem decomposition. As for subcontroller refinement, note that
each subcontroller redesign procedure is equivalent to replacing a suboptimal
subcontroller with a subcontroller which is optimal with respect to the plant and
remaining subcontrollers.

Proposition 3.1

For a given starting design and redesign sequence {i, }% , suppose that the optimal
projection equations can be solved for each k to yield the global minimum. Then
{J}&, is monotonically non-increasing and hence convergent.

Determining both a suitable starting point and redesign sequence for solvability
and attaining the decentralized global minimum remain areas for future research.
With regard to algorithms for solving the optimal projection equations for each
subcontroller redesign procedure, details of proposed algorithms can be found in the
works of Hyland (1983, 1984) and Hyland and Bernstein (1985).

4. Application to interconnected flexible beams

To demonstrate the applicability of the main theorem and the sequential design
algorithm, we consider a pair of simply supported Euler—Bernoulli flexible beams
interconnected by a spring (see the Figure). Each beam possesses one rate sensor and
one force actuator. Retaining two vibrational modes in each beam, we obtain the 8th-
order interconnected model

A, A B 0,
A=[ 11 12]’ Bl=[ ll], Bz=[‘ l]
Ay Az 04y B,,

C,=[Cyy 05,4), C;=[0,,4 C,]

.
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where
r 0 Wy 0 0
p —wy;~(kjwy)(sin nc))? =2 w,;  —(k/wy;)(sin re;)(sin 2nc;) 0
" 0 o 0 W
| —(k/wy;)(sin nc;)(sin 2nc;) 0 —wy; — (kjwy;)(sin 2nc))? — 2wy,
[ 0 0 0 0
. (k/wy;)(sin ne;)(sin me;)) O (k/wy;)(sin nc;)(sin 27c;) O
v 0 0 0 0
‘(k/wu)(sin nc;)(sin 2nc;) 0 (k/wy;)(sin 2nc;)(sin 2mc;) O
i#j
0
~sin na,
B;= 0 , Cy=[0 sinms; 0 sin2ns;]
—sin 2na;

a;=a4/L;, s;=8/L;, c¢;=¢&/L;

In the above definitions, k is the spring constant, w;; is the jth modal frequency of the
ith beam, {; is the damping ratio of the ith beam, L, is the length of the ith beam, and
d;, §; and ¢; are, respectively, the actuator, sensor and spring-connection coordinates
as measured from the left in the Figure. The chosen values are
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k=10
wu=1, wy=4, {=0005 L=1 i=12
4, =03, § =065 ¢ =06
6,=08, §,=02 =04

In addition, weighting and intensity matrices are chosen to be

10 1t o Jfr o 1 0
R, = block-diagonal s , )
|0 Vo, 0 ljwy | |0 Vwy, 0 lw,,

R,=R; =011,
‘ [0 o] [0 o][o of[o o
¥V, = block-diagonal , ) )
[0 1 01 0 1}]0 1
V=V, =011,

For this problem the open-loop cost was evaluated and the centralized 8th-order
LQG design was obtained to provide a baseline. To provide a starting point for the
sequential design algorithm, a pair of 4th-order LQG controllers were designed for
each beam separately ignoring the interconnection, i.c. setting k = 0. The optimal
projection equations were then utilized to iteratively refine each subcontroller. The
results are summarized in the Table.

Design Cost

Open loop 163-5
Centralized LQG

n.=8 19-99
Suboptimal decentralized

n,=n,=4 5943
Redesign subcontroller 2 2819
Redesign subcontroller 1 2329
Redesign subcontrolier 2 23-04
Redesign subcontroller 1 2225
Redesign subcontroller 2 2194
Redesign subcontroller { 21-86
Redesign subcontroller 2 21-81
Redesign subcontroller 1 21-79
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Abstract

Sufficient conditions are developed for desiguing robust
decentralized static output feedback controllers. The approach involves
deriving necessary conditions for minimizing a bound on closed~loop
performance over a specified range of uncertain parameters. The effect of
plant parameter variations on the closed-loop covariance is overbounded by
means of a modified Lyapunov equation whose solutions are guaranteed to
provide robust stability and performance.
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1. Introduction

Because of implementation constraints, cost, and reliability
considerations, a decentralized controller architecture is often required
for controlling large scale systems. Furthermore, such controllers must be
robust to variations in plant parameters. The present paper addresses both
of these concerns within the context of a robust decentralized design theory

for continuous-time static controllers.

The approach to controller design considered herein involves
optimizing closed-loop performance with respect to the feedback gains. This
approach to output feedback was studied for centralized controllers in
[8,9] and for decentralized controllers in [10]. An interesting feature of
[9,10] is the recognition of an oblique projection (idempotent matrix) which
allows the necessary conditions to be written in terms of a modified Riccati
equation, When the problem is specialized to full-state feedback, the
projection becomes the identity and the modified Riccati equation coincides
with the standard Riccati equation of.LQR theory. It should be pointed out
that this oblique projection is distinct from the oblique projection arising
in dynamic compensation ([7]). A unified treatment of the static/dynamic
(nonstrictlybproper) centralized control problem involving both projections

is giﬁen in [2].

The present paper goes beyond earlier work by deriving sufficient
conditions for robust stability and performance with respect to variations
in the plant parameters. Although plant disturbances are represented in the
usual stochastic manner by means of additive white noise, uncertainty in the
plant dynamics is modeled deterministically by means of constant structured

parameter variations within bounded sets. Thus, for example, the dynamics
p

matrix A is replaced by A + E akAk, where 0, 1s a constant uncertain

k
k=1
parameter assumed only to lie within the interval [_Oi’ak] but otherwise

unknown, and Ak is a fixed matrix denoting the structure of the uncertain
parameter 0, as it appears in the nominal dynamics matrix A. The system

performance is defined to be the worst-case value over the parameter

.

.




uncertainties of a quadratic criterion averaged over the disturbance

statistics.

Since the closed-loop performance can be written in terms of the
second-moment matrix, a performance bound over the class of uncertain
parameters can be obtained by bounding the state covariance. The key to
bounding the state covariance is to replace the usual Lyapunov equation for

the second-moment matrix by a modified Lyapunov equation. In the present

paper the modified Lyapunov equation is constructed by adding two additional
terms. The first term corresponds to a uniform right shift of the open-loop
dynamics. As is well known ([1]), such a shift may arise from an
exponential performance weighting and leads to a uniform stability margin
for the closed-loop system. In order to obtain robustness with respect to
specified structured parameter variations, however, an additional term of
the form AkQAE is required. Such terms arise naturally in systems with
multiplicative white noise; see [4] and the references therein for further
details. The exponential cost weighting and multiplicative noise
interpretations for the uncertainty bound have no bearing in the present
paper, however, since parameter variations are modeled deterministically as

constant variations within bounded sets.

Having bounded the state covariance over the class of parameter

uncertainties, the performance can thus be bounded in terms of the solution

of the modified Lyapunov equation. The performance bound can be viewed as

an auxiliary cost and thus leads to the Auxiliary Minimization Problem:

Minimize the performance bound while satisfying the modified Lyapunov
equation. The nice feature of the auxiliary problem is that necessary
conditions for optimality of the performance bound now serve as sufficient
conditions for robust performance in the original problem. Thus our
approach seeks to rectify one of the principal drawbacks of necessity
theory, namely, guarantees of stability and performance. Furthermore, it
should be noted that if numerical solution of the optimality conditions
yields a local extremal which is not the global optimum, then robust
stability and performance are still guaranteed, although the performance of
the extremal may not be as good as the performance provided by the global e

minimum, Philosophically, the overall approach of control design for a




performance bound is related to guaranteed cost control ([6]). We note,
however, that the bound utilized in [6] is nondifferentiable, which

precludes the approach of the present paper.

A further extension of previous approaches considered in the
present paper involves the types of feedback loops considered.
Specifically, the usual approach to static output feedback involves nonnoisy
measurements and weighted controls, while the dual problem involves feeding
back noisy measurements to unweighted controls. This situation leads to an
additional projection ([2]) which is dual to the projection discussed in
[9,10]. The inclusion of the dual case now leads to a pair of modified
Riccati equations coupled by both the uncertainty bounds and the oblique

projections.

In addition to the two types of loops discussed above, one may
wish to consider the two remaining cases, namely, feeding back noisy
measurements to weighted controls and feeding back nonnoisy measurements to
unweighted controls. It is easy to show, however, that the former case
leads to an undefined (i.e., infinite) value for the performance while the

latter case is highly singular and fails to yield explicit gain expressions.

Finally, the scope of the present paper is limited to a rigorous
elucidation of sufficient conditions for robust decentralized output
feedback. Numerical solution of these equations can be carried out by
extending available algorithms for centralized output feedback. Numerical
algorithms for solving a single modified Riccati equation in the absence of

uncertainty bounds are discussed in (10].

~

2. Notation and Definitions

5. grxs’ gr. E real numbers, rxs real numbers, ngI, expectation
I ( )T rxr identity, transpose

®, ® Kronecker sum, Kronecker product ([5])

§r rXr symmetric matrices




nez

[ L, ]

asymptotically
stable matrix

n, r; 8§, p
i, §. k

m., 4.
1 -1

m., £.
J zJ

rxr symmetric nonnegative~definite matrices

rxr symmetric positive-definite matrices

T r
- » z_,
Z2 ZIGE 1 2262

T T
Z,2,€2, Zy» 2,€8

matrix with eigenvalues in open left half plane

positive integers

indices, i=l,...,r, j=1l,...,s8, k=1,...,p
positive integers, i=1l,...,r
positive integers, j=1,...,s

n-dimensional vector
-~
mi’ gi—dimensional vectors, i=l,...,r

-~

mj' gj-dimensional vectors, j=l,...,8

nxn matrices
nxm, matrices; zixn matrices, i=l,...,r

nxmj matrices; zjxn matrices, j=1,...,s8
nxn matrices, k=1,...,p
nxm:.L matrices, i=1,...,r, k=1l,...,p
tjxn matrices, j=1,...,8, k=1,...,p
m.x{, matrices, i=l,...,r
i
m.x£, matrices, j=l,...,8
J J
positive number
a
+ =
A ZIn
positive number, k=1,...,p

2 -
ak/a. k=1,...,p

real number, k=1,...,p




w (t), w.(t)
o j

Vo, Vj
oj
R, R
o i
R .
oi
A, Ay
4a
w(t)
R
\'
R .
ai
aj

n-dimensional, Lj—dimensional white noise, j=l,....8

N L3
intensities of w , w.; V. €N, V.€P 7, j=1,...,s
o’ "j' o = j =

anjj cross intensity of L wj. 3=l .cc.s8

: m,
state and control weightings; Roe y“. Rie P 5

i=l,..4bT

nxm cross weighting; R -R RllRT

A+ :E:B D c + :E:B EgiCyo A+ %

i=1

r 8
AA + Z:Alsincic].L + EBjEchCj
i=1 j=1

>0, i=1,...,1

8

w (t) + :E:BJEC w.(t)
j=1

iciicii

S, aTpT T 4 oTT -
R, + :E:[Roincic + C;D_R . + C;D_.R.D_.C.]

v+ :E:[v + B.E V%, + B.E V.EL.B ]
oj cJ J jej o] jejjei’]

For arbitrary nxn Q, P define:

e

1>

P

i

T .
R, + }E:y B1k a0 Pag SBPH R }E:ykslkPAk 121,00y T

k=1

P

3He

T T .
Vo+ % Gy 20+ Vo 4 FTNAQCH. Sl

k=1




3. Robust Stability and Performance Problem

In this section we state the Robust Stability and Performance

Problem along with related notation for later use. Let

nxn nxm1 nxm len zsxn
UCR x R x ... xR Tx R X ... xR denote the set of

uncertain perturbations QSAJABI....JSBr,ACI.....ACS) of the nominal system
|000.C .
]

[

matrices A,B.,...,B ,C
1 il S |

Robust Stability and Performance Problem. Determine
(D .uoch ,E
c

cl r cl
nth-order controlled and disturbed plant

.....Ecs) such that the closed-loop system consisting of the

r g
x(6) = (AaRx(e) + (8,448 Ju () + D Bu () +w (6), telom), (3.1)
i=1 j=1

nonnoisy and noisy measurements

7.(8) = C.x(t), i=l,...,r, (3.2)
1 1

y.(t) (C.+AC.)x(t) +w_ (t), j=1,...,s, (3.3)
J J J J

and static output feedback controller

ui(t) Dciyi(t)' i=l,...,r, (3.4)

-

u,(t)
J

Ev;(0), =l (3.5)

is asymptotically stable for all variations in U and the performance criterion

JO .,eeesD LE ,...,E ) 2
cl cr cl cs
(3.6)
r r
. T T T

sup lim sup E[x (t)Rox(t) + Zzz:x (t)Roiui(t) + :E:ui(t)Riui(t)]

g otoe i=1 i=1
is minimized.

6




-~

For each controller (D .,...,P ,E .,...,E ) and variation in U,
cl cr’ ¢l cs -

the closed-loop system (3.1)-(3.5) is given by

x(t) = (AHdA)x(t) + w(t), t €[0,®), (3.7)

- ~

where w(t) is white noise with intensity veg“.

Remark 3.1. In the case AAMdBi,ACj = 0 it is well known that
stabilizability is related to the existence of fixed modes ([11]). When
plant uncertainties are present the problem is, of course, far more complex.
In the present paper sufficient conditions for robust stability are obtained

as a consequence of the existence of robust performance bounds.

Remark 3.2. Note that the controller architecture is quite general
in that it includes two distinctly different types of decentralized loops.
The first type, indexed by i=1,...,r, involves feeding back nonnoisy
measurements to weighted controls. This is the standard setting in the
optimal output-feedback literature ([8~10]). In addition, we include the
dual situation, indexed by j=1,...,s, which involves feeding back noisy
measurements to unweighted controls. The case in which only one type of
loop is present can be formally recovered from our results by ignoring
Bi and Ei or gj and Cj as required. As noted in Section 1, noisy
measurements cannot be fed back to weighted controls via static control,
while feeding back nonnoisy measurements to unweighted controls is a highly

singular problem.

Remark 3.3. Note that the problem statement is restrictive in the
sense that uncertainties in both the control and observation matrices are
not permitted within the same feedback loop. Although it is indeed possible
to permit such simultaneous uncertainties, the development is considerably

more complex and hence is outside the scope of this paper. !*
Remark 3.4. The cost functional (3.6) is identical to the LQG

criterion (usually stated in terms of an averaged integral) with the
exception of the supremum for evaluating worst case over U, T
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4. Sufficient Conditions for Robust Stability and Performance

In practice, steady-state performance is only of interest when the
closed-loop system (3.7) is stable over U. The following result, which

expresses the performance in terms of the state covariance, is immediate.

Lemma 4.1, Let (Dcl.....D ’Ecl""’Ecs) be given and suppose the

. cr
system (3.7) is stable for all variations in U. Then

JMD ,se..sD _L,E .,...,E ) = sup tr Q -i. (4.1)
cl cr’ el Ccs v AA

where Q . £ lim E[x(t)x(t)T]G y“ is the unique solution to
t—

0 = (adA)Q - + Q - (a+an) T + V. (4.2)
Aa AA

Remark 4.1. When U is compact, "sup" in (4.1) can be replaced by
"max", ‘

We now seek upper bounds for J(Dcl""’Dcr'Ecl

assumptions allow us to obtain robust stability as a consequence of robust

seessE ). Our
cs

performance.

mleI m xlr mleI
Theorem 4.1. Let £: y” x R X ... X R t x R X oos
m xzs n
x R — S be such that
N T
AAQ + QAA _<_ Q(Q’DCI”‘..DCI"ECI'...'ECS).
(4A,48 _,...,AB ,AC,...,AC ) €U, (4.3)
1 r 1 [ -
m1x£1 mrxzr mlle msxz
(QD_.seeesD LE .4e...E_ ) € N"xR X...xR xR x...xR ° 5.
cl cr’cl cs = 7= = = =

g




F-!:4444444444444444444"""‘“““““1“““__““;

Furthermore, for given (Dcl"°"D 'Ecl""’Ecs) suppose there exists Q égp

cr
satisfying

0= AQ + QAT + QQD_j. .. .0D Lo.E ) 4+ V, (4.4)

cr'Ecl cs

and suppose the pair (V1/2.A+AA) is detectable for all variations in U.

Then, for all variations in U, A+AA is asymptotically stable,

Q -~ _<. Q: ’ * (4.5)
AA

where QA; satisfies (4.2), and

.J(Dcl""'D ,E

cr cl""'Ecs) ¢ tr QR. (4.6)

Proof. For all variations in U, (4.4) is equivalent to
= (A+AA A AAY T A v
0 = (A+AA)Q + Q(A+4A)" + H(Q.D ys---sD, LE (o0 B WAA) 4V, (4.7)
where

- s o ~p
¢(Q.Dc1,...,Dc ,Ecl,...,Ecs,AA) -.Q(Q.Dcl....,Dcr.Ecl.....Ecs) (4AQ+Q4A™) .

T

Sl/2

Note that by (4.3), @(+) > 0 for all variations in U. Since (V LA+AA) is

detectable for all variations in U, it follows from Theorem 3.6 of [12] that
- L 1/2 T T,

([V+¢(Q.Dc1,....Dcr,Ecl,...,Ecs.AA)] JA+44) is detectable for all

variations in U. Hence Lemma 12.2 of [12] implies A+4A is asymptotically

stable for all variations in U. Next, subtracting (4.2) from (4.7) yields

0 = (A+4A)(@-Q ) + (@-Q -) (A+dm)T + #(Q,D_,....,D_,E

AA AA cr Cl....'ECS’AA).

or, equivalently, (since A+4A is asymptotically stable)

2o~ - T AT
Q-q. = e(A+AA) - .AA)e(A+AA) t g > 0.
AA 0 [of -

t
¢(Q,Dc1.....Dcr.Ec1,....




which implies (4.5). Finally, (4.5) and (4.1) yield (4.6).[]

Remark 4.2, If V is positive definite then the detectability -
hypothesis of Theorem 4.1 is automatically satisfied.

5. Uncertainty Structure and the Quadratic Lyapunov Bound

i

The uncertainty set U is assumed to be of the form

U= {(AAdB,,....48_,A4C,,...,AC):

P P :
AA = z:crkAk. a3, = Z"kBik' i=1,...,r, (5.1)
k=1 k=1 :

<P P
_ 2,2
A, =3 0 Cops 3TLiennss, dolel <13,
k=1 k=1

where, for k=1,...,p: (Ak'Blk'""Brk'clk""'csk) are fixed matrices

denoting the structure of the parametric uncertainty; &, is a given

k
uncertainty bound; and ok is an uncertain parameter., Note that the
uncertain parameters ak are assumed to lie in a specified ellipsoidal region

in BP. The closed-loop system thus has structured uncertainty of the form

P
AA = chAk', (5.2)
k=1 oﬁ
- =
where
r 8
2 . ~ . _ -
A EA 4 ZBichici + ZBjEchjk. k=1,....p. (5.3) |
i=1 j=1

10




D eeesD e

F ‘To obtain explicit gain expressions for ( c1* DBy 'Ecs)
we assume that, for each k € {1,...,p}, at most one of the matrices

M 1k""' rk' lk""’csk is nonzero. Note that this assumption does not
preclude the treatment of uncertainties in the input and output matrices.

= It requires only that such uncertainties be modeled as uncorrelated.
Given the structure of U defined by (5.1), the bound Q satisfying
(4.3) can now be specified. In the following result Q denotes an arbitrary

element of t;ln. not necessarily a solution of (4.4).

Proposition 5.1. Let o be an arbitrary positive scalar. Then the

function

Q(QuD_ ;- 44D, WE_jhee,E ) =0Q 4O ZakAkQAk (5.4)

satisfies (4.3) with U given by (5.1).

Proof. Note that

0 < Z[(a )T (ak/al/z)Ak]Q[(a 1/2

1/2.7 ,T
ok/ak)In—(ak/oz )Ak]

p
~ -T
“E @ /“k)Q +a EakAkQAk D0 (4.0+04),
k=1

which yields (4.3).0]

Remark 5.1. Note that the bound £ given by (5.4) consists of two
distinct terms. The first term ®Q can be thought of as arising from an

exponential time weighting of the cost, or, equivalently, from a uniform

11 ljt




)%
. . . -1 27 T
right shift of the open-loop dynamics ([1]). The second temm « :E:akAkQAk
k=1

arises naturally from a multiplicative white noise model ([3,4]). Such
interpretations have no bearing on the results obtained here since only the
bound Q defined by (5.4) is required. Note that the bound is valid for all

positive a,

Rematrk 5.2. The conservatism of the bound (5.4) is difficult to
predict for two reasons. First, the overbounding (4.3) holds with respect
to the partial ordering of the nonnegative-definite matrices for which no
scalar measure of conservatism is available. And, second, the bound (4.3)
is required to hold for all nonnegative-definite matrices Q and feedback

gains (D __,...D_ ,E _,...,E_ ). The conservatism will thus depend upon the
cl cr cs

cl

actual values of Q, D_;,+..sD  ,E ;,...,E  determined by solving (4.4).

6. The Auxiliary Minimization Problem and Necessary Conditions for

Optimality

Rather than minimizing the actual cost (3.6), we shall consider the

upper bound (4.6). This leads to the following problem.

Auxiliary Minimization Problem. Determine

(Q’Dcl"°"D E 1""’Ecs) which minimizes

exr’c
(@D gueesD LB heennB ) 2 tr QR (6.1)
subject to
QeN", (6.2)
P
0= A + Qg + I %A QAL +V (6.3)

"
U
fan

and

.4




(Vl/z,AtAA) is detectable for all variations in U. (6.4)

The relationship between the Auxiliary Minimization Problem and the
Robust Stability and Performance Problem is straightforward as shown by the

following observation.

Prqpos1t}on~6.1. If (Q’Dc1’°"’D ’Ec1'°"5Ecs) satisfies

cr
(6.2)-(6.4) then A+4A is asymptotically stable for all variations in U, and

,-.-’D ,E .-nn,E )o (6.5)

) < Q(Q’Dcl cr’el cs

J(Dcl""’D Ecl""’E

cr’ cs

_ Proof. With @ given by (5.4), Proposition 5.1 implies that (4.3)
is satisfied. Since the hypotheses of Theorem 4.1 are satisfied, robust
stability with performance bound (4.6) is guaranteed. Note that with

definition (6.1), (6.5) is merely a restatement of 4.6).J

The derivation of the necessary conditions for the Auxiliary
Minimization Problem is based upon the Fritz John form of the Lagrange
multiplier theorem.* Rigorous application of this technique requires that

(Q,Dcl,...,D ’Ecl""’Ecs) be restricted to the open set

cr

s é {(Q’Dcl""’D ): (2e£n and A is asymptotically stable},

cr'Ecl"°"Ecs

where

P
28 Ay + D Y ASN .
k=1

*The Kuhn-Tucker theorem requires a priori verification of a constraint
qualification which is impossible to confirm in the present context. The
Fritz John version is less restrictive and hence more suitable in the

present context.
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The requirement (Q,D .,...,D ,E ""'Ecs) € S implies that Q and its

cl cr cl
nonnegative—definite dual P are unique solutions of the modified Lyapunov

equations (6.3) and

T

P
0 = AgP + PAy + :E:ykA:PAk + R, (6.6)
k=1

An additional technical requirement is that (Q'Dcl"'°'D Ecl,....E ) be

cr’ cs

confined to the set

+ a . - T .
§" # {(Q.D,;,.--uD, ,E_,...,E ) €S: CQC, >0, i=l,...,r,

-

and B-PB, > 0, 3=1,...,s}.
i3

The positive definiteness conditions in the definition of §+ hold when Ci
and B, have full row and column rank, respectively, and Q and P are positive
definite. As can be seen from the proof of Theorem 6.1 these conditions

-

imply the existence of the projections 7, and T, corresponding to the two
1 h|

+
distinct types of feedback loops. Note that S is open.

Remark 6.1. As pointed out in Remark 3.1, the set S may be empty
in which case, of course, our results do not apply. As will be seen,
however, our approach does not require explicit verification that S is
nonempty since robust stability is obtained as a consequence of robust

performance.

Remark 6.2. As will be seen, the constraint

(Q'Dcl""’Dcr’Ecl""'

required for either robust stability or robust performance since Proposition

Ecs)€'§ need not be verified in practice and is not

6.1 shows that only (6.2)-(6.4) are needed. Rather, the set S constitutes
sufficient conditions under which the Lagrange multiplier technique is
applicable to the Auxiliary Minimization Problem. Specifically, the
condition Q > O replaces (6.2) by an open set constraint, while the
asymptotic stability of ; serves as a normality condition which further

implies that the dual P of Q is nonnegative definite.
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Necessary conditions for the Auxiliary Minimization Problem can now

be obtained.

Theorem 6.1. If (Q,D .,....D ,E ,...,E )E€ s* solves the
—_— cl cr ¢l cs -

Auxiliary Minimization Problem with U given by (5.1) then there exists

I’ng such that Dcl""’D Ecl""'Ecs are given by

cr’
_ -1 “T % 4T, -1 .
Dci = RaiPaiQCi(CiQCi) . i=l,. .., 1, (6.7)
_aT o -1 -1 .
Ecj = (B PB ) B QaJVaJ' j=l,..es8, (6.8)

and such that Q, P satisfy

T
_1 T .
(Ad-z iai Pa T )Q + Q(Aa—z i a:.PaiTi) * vo
i=1
p r
+ 'y(—EBR—lP yQ( EBRPT)T (6.9)
k Ak ik ai ai 1 Ak ik aiai’i ‘
k=1 i=1
s
. -1 T"°T
ZQaJ aj aJ +Z QaJ aJQaJTJl
j=1
s s
1
= (Ag- V .C ) P + P — C.) +R
Aaz % \AO‘Z 1%;37a3% °
j=1 j=1
s
E ( E'r c. ) e -z rQ v i) (6.10)
yk A j a aJ Jk A anj aj jk '
j=1
r T
2 PT R 1P + TT PT R 1P .T.
ai ai ai il aiai ai'il’
i=1 i=1

where

N Y ol




v -

B Smenaessabetes nans

. 2qctccach e, r S -1, isl...r, (6.11)
i i 11 i 1l 1 n

~ Al oT o 10 - a .

. = B.(B.PB. .P, ., =T7. -1, =1,...s5. 6.12
"'J J(BJ BJ) BJ TJl i n 3j s ( )

Furthermore, the auxiliary cost is given by
P
T T 1 -1 -1

Q(Q’DCI'..-.D ,E

cr’ ¢l

,oo,E ) = trlQ(R +:£:r.P R ,R.R ,P .+ -2R .R ,P__7.)].
(o -] o] i1 81 81 1 a1 a1 1 01 ai a1 1

i=1

(6.13)

Conversely, if there exist Q, Peg” satisfying (6.9) and (6.10) then Q
satisfies (6.3) with (Dcl""'Dcr’Ecl""’Ecs) given by (6.7) and (6.8), and
g_(Q.Dcl.....Dcr,Ecl.....Ecs) is given by (6.13).

-

Proof. To optimize (6.1) over the open set S, where

ltn»

A +. , .
= {(Q.Dcl.....Dcr.Ecl,....Ecs)€§ : (6.4) is satisfied},

subject to the constraint (6.3), form the Lagrangian

P
. a i - "y PR
L(QuD_ aeesD LB jueeenB, ) & €r[AQR + (AQ+QA +}E:)kAkQAk+V)P].

cr’c
k=1

where the Lagrange multipliers A > O and P€ ann are not both zero. Setting
3L/3Q = 0, A= 0 implies P = O since A is asymptotically stable. Hence,

without loss of generality set A = 1. Thus the stationarity conditions are

given by
3 P
L °T ~ ~p = =
55 = faf + PAg + }E:VLAkPAk +R =0, 6.14)
k=1
=D C qct + P_.qCT = 0 i=1 r (6.15)
D . T Taiciivi aiQ i~ 1=l,.0e.,1, .
[+ §
Sk - = BlPBE V. +BlRQ =0 jl....s. (6.16)
aEcj j jeiaj i ~aj
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Since (QuD_.sevesD LE 4...,E ) €S, C.QC. and BIPB, are invertible and
cl cr’ cl cs’ - iti i3

hence (6.15) and (6.16) imply (6.7) and (6:8). Finally, (6.9) and (6.10)

are equivalent to (6.3) and (6.6). O

Remark 6.3. Several special cases can be recovered formally from
Theorem 6.1. For example, when the control weighting is nonsingular and the
measurement noise is Eero, i.e., when ;i and yi are absent for i=1,...,r,
delete (6.8) and set *, = 0 in (6,9). In this case the last two terms in
(6.9) can be deleted. Deleting also the uncertainty terms Ak’ Bik' Cjk
yields the results of [10] with the added features of correlated
plant/measurement noise (Vo') and cross weighting (Roi)' Furthermore,
assuming a centralized structure for the static controller, i.e., r=l,

yields the usual static output feedback result ([8,9]).

7. Sufficient Conditions for Robust Stability and Performance

We now combine Proposition 6.1 and Theorem 6.1 to obtain sufficient

conditions for robust stability and perfommance.

Theorem 7.1. Suppose there exist Q.'Pe'gn satisfying (6.9) and

(6.10) and suppose that (VI/Z,A%AA) is detectable for all variations in U
with (Dcl""’Dcr’Ecl _
(5.1). Then, with (Dcl""’Dcr’hcl'""Ecs) given by (6.6) and (6.7), A+AA

is asymptotically stable for all variations in U, and the performance of the

""‘Ecs) given by (6.6) and (6.7) and U given by

closed~loop system satisfies the bound

P
TT - - -
JOD ,eeesD L,E _,...,E ) < trlQ(r +§ T,P R %R.R l.P .7.~2R R I.P .T.)]).
cl cr ¢l cs’ — [} iaiaiiaiaili ol ai ai 1

i=1
(7.1)

Proof. The converse of Theorem 6.1 shows that Q satisfies (6.3)
with O .,...,D L,E _,...,E ) given by (6.7) and (6.8). Hence, with the
cl cr cl cs .
detectability assumption (6.4), Proposition 6.1 implies robust stability and

performance.[]
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Remark 7.1, The application of Theorem 7.1 in practice requires
1) numerical solution of (6.9) and (6.10), and 2) verification of the

detectability hypothesis. No other assumptions need be verified in applying

this result,

8. Concluding Remarks

We have developed a theory of robust decentralized output feedback
via static control. The development permits the treatment of noisy and
nonnoisy measurements, weighted and unweighted controls, and structured
real-valued parameter uncertainties in the plant matrices. The theory
provides a robustification of results given in [8-10] for both centralized
and decentralized optimal output feedback. The theory is constructive in
nature rather than existential. Specifically, the main result, Theorem 7.1,
involves a coupled pair of modified Riccati equations (6.9), (6.10) whose
solutions, when they exist, are used to explicitly construct feedback gains
(6.7), (6.8) which are guaranteed to provide both robust stability and
performance. Future research is required for evaluating the
conservativeness of the theory. The numerical algorithms developed in [10]

provide a starting point in this regard.
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